

Consulting Geotechnical & Environmental Engineering Construction Materials Inspection & Testing

HYDROGEOLOGICAL REPORT OLD FORT ROAD BRIDGE SOUTH OF HWY 12, ABOVE THE TRANSCANADA TRAIL TOWNSHIP OF TAY COUNTY OF SIMCOE, ONTARIO

PREPARED FOR:

Lea Consulting Ltd. 625 Cochrane Drive, 9th Floor Markham, Ontario L3R 96R

> File No. 1-21-0168 July 30, 2021 ©**Terraprobe Inc.**

Distribution:

1 Copy - Lea Consulting Ltd 1 Copy - Terraprobe Inc., Brampton

Greater Toronto

11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250 brampton@terraprobe.ca Hamilton – Niagara 903 Barton Street, Unit 22 Stonev Creek, Ontario L8E 5P5 (905) 643-7560 Fax: 643-7559 stoneycreek@terraprobe.ca

Central Ontario 220 Bavview Drive. Unit 25 Barrie. Ontario L4N 4Y8 (705) 739-8355 Fax: 739-8369 barrie@terraprobe.ca

Northern Ontario

1012 Kelly Lake Rd., Unit 1 Sudbury. Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558 sudbury@terraprobe.ca

www.terraprobe.ca

Terraprobe Inc.

EXECUTIVE SUMMARY

Terraprobe Inc. (Terraprobe) has been retained by Lea Consulting Ltd. (LEA) on behalf of the County of Simcoe to provide hydrogeological engineering services in support of the replacement of the existing Old Fort Bridge ("the Site") with a single span bridge supported on spread footings, in the Township of Tay, County of Simcoe, Ontario. The Trans Canada Trail crosses the Site below the existing bridge, approximately 285 m south of the intersection of Old Fort Road and Highway 12.

The purpose of this study was to assess the groundwater conditions and dewatering requirements for construction activities associated with the bridge replacement.

The conclusions of the investigation are:

- The northern extent of the Site and the study area are noted to be within a significant groundwater recharge area (SGRA), indicating that aquifer recharge in the area is dependent on rainfall infiltration.
- Soils at the Site can be characterized as deposits of fill overlying a layer of sand overlying silty sand to sandy silt deposits. A thin layer of clayey silt was encountered in the boreholes drilled north and south of the bridge embankments.
- Stabilized groundwater levels at the Site were observed at an elevation of 191.6 masl (depth of 3.7 m below existing grade) at the north section of the Site and at an elevation of 188.7 masl (depth of 5.6 m below existing grade) at the southern section of the Site.
- Based on a review of the in-situ test results, the grain size analysis and published hydraulic conductivities for the investigated soils, the hydraulic conductivity of the sandy silt to silty sand soils is estimated to be 2.13 x 10⁻⁷ m/s.

The following dewatering requirements are expected given the requirements for bridge replacement and improvements at the Site:

- Dewatering is anticipated to be required for footing construction of the new bridge and it is envisaged that open cut excavations will be required extending to undisturbed competent native soils.
- The estimated water taking volume from excavations required to construct the footings simultaneously is approximately 29,500 L/day. The dewatering system should also be designed to accommodate a typical 2-year design storm event (37 mm rainfall event) which will generate approximately 86,500 L/day, hence resulting in a total anticipated dewatering volume of approximately 116,000 L/day.
- Construction dewatering activities will require a posting to the Ontario Ministry of the Environment Conservation and Parks (MECP) Environmental Activity and Sector Registry (EASR). Posting to the EASR is required for construction dewatering activities where the dewatering volume is more than 50,000 L/day and less than 400,000 L/day.
- Construction dewatering activities will not require an application to the Ontario Ministry of the Environment Conservation and Parks (MECP) for a Permit to Take Water (PTTW). A PTTW is only required for dewatering volumes that exceed 400,000 L/day.

TABLE OF CONTENTS

1.0	INTRODUCTION		
2.0	SCOPE OF WORK		
3.0	3.0 DESCRIPTION OF SITE CONDITIONS		I
	3.1	Site Location and Description1	I
	3.2	Site Topography and Drainage2	2
	3.3	Regional Physiography and Geology2	
	3.4	Regulatory Mapping 2	2
	3.5	Groundwater Resources	3
	3.6	Results of Subsurface Investigation4	1
	3.6.1	Pavement Structure4	1
	3.6.2	Earth Fill4	1
	3.6.3	Sand5	5
	3.6.4	Clayey Silt	5
	3.6.5	Silty Sand Till	5
	3.7	Groundwater Levels	3
	3.8	Aquifer Performance Tests6	3
	3.9	Groundwater Quality Assessment	7
	3.10	Site Inspection to Assess Hydrogeological Features7	7
4.0	DISCUS	SSION AND ANALYSIS	3
	4.1	Summary of Hydrogeological Conditions	3
	4.2	Construction Details	3
	4.3	Construction Dewatering Volumes9)
	4.4	Assessment of Potential Impacts9)
	4.4.1	Zone of Influence9	9
	4.4.2	Geotechnical Considerations10)
	4.4.3	Surface Water, Wetlands and Areas of Natural Significance10)
	4.4.4	Local Wells and Zone of Influence11	1
	4.5	Construction Issues	1
5.0	CONCL	USIONS AND RECOMMENDATIONS	1
6.0	LIMITA	TIONS AND RISK	2
	6.1	Procedures	2
	6.2	Changes in Site and Scope	2
FIGU	IRES		

Figure 1	Site Location Plan
Figure 2	MECP Well Location Plan
Figure 3	Borehole Location Plan – Existing Condition
Figure 4	Borehole Location Plan – Future Condition
Figure 5	Subsurface Profile

APPENDICES

Appendix A	Regulatory and Topographic Mapping
Appendix B	MECP Well Records
Appendix C	Borehole Logs
Appendix D	Grain Size Analysis
Appendix E	Aquifer Response Test
Appendix F	Laboratory Analysis
Appendix G	Preliminary General Arrangements (LEA)

1.0 INTRODUCTION

Terraprobe Inc. (Terraprobe) has been retained by Lea Consulting Ltd. (LEA) on behalf of the County of Simcoe to provide hydrogeological engineering services in support of the of Old Fort Bridge ("the Site") replacement with a single span bridge supported on spread footings, in the Township of Tay, County of Simcoe, Ontario. The Trans Canada Trail crosses the Site below the existing bridge structure, approximately 285 m south of the intersection of Old Fort Road and Hwy 12,

The scope of work for the hydrogeological engineering services is outlined in Terraprobe's proposal titled "Consulting Engineering Services, Hydrogeological Assessment, Old Fort Road Bridge Replacement, Simcoe County, Ontario" dated February 25, 2021.

The purpose of this study was to assess the groundwater conditions and dewatering requirements for the proposed construction activities associated with the bridge replacement.

The following third-party report, provided by LEA, was reviewed for background information relevant to the geological and hydrogeological conditions of the Site and study area:

Thurber Engineering Ltd. (2021), "Foundation Investigation and Pavement Design Report, Old Fort Overhead Bridge Replacement, County of Simcoe, Ontario". File No. 28556, Issued March 31, 2021.

2.0 SCOPE OF WORK

The scope of work for the hydrogeological investigation consisted of the following:

- Review of background information and completion of site inspection. Documents available for the study area were reviewed to determine the status of existing wells, local and regional stratigraphy, groundwater flow direction, and any areas of concern identified by source water protection jurisdictions. A site inspection was also completed to confirm existing site conditions including adjacent site use, topography, drainage, and vegetation.
- Completion of single-well response tests. Groundwater measurements were obtained from the installed monitoring wells and single well response tests were carried out in these monitoring wells. The results of these single-well response tests were used to estimate the hydraulic conductivities of the subsurface soils.
- Dewatering Assessment. An assessment of the groundwater inflow rates and volumes into open excavations was carried out for the two footing locations based on estimated hydraulic conductivity values obtained from the single well response tests and soil grain size information.
- Hydrogeological Report. A hydrogeological report has been prepared as part of the deliverable requirements. Provided within the report are recommendations on the estimated dewatering volumes and rates as well as mitigation measures that are likely required.

3.0 DESCRIPTION OF SITE CONDITIONS

3.1 Site Location and Description

The north limit of the project is approximately 285 m south of the intersection of Old Fort Road and Highway 12, i.e. approximately Sta. 10+556, and the south limit is approximately 50 m south along Old Fort Road, i.e. Sta. 10+607 with chainage increasing from north to south.

Within the project limits Old Fort Road is a paved two-lane rural road that crosses above the Trans Canada Trail via an existing two-lane bridge. The road shoulders north and south of the bridge are unpaved. A ditch was noted below the bridge, adjacent to the Trans Canada Trail and draining east towards Wye Marsh. The north and south project limits are bounded by residential properties.

3.2 Site Topography and Drainage

The Site has an approximate ground surface elevation varying between Elev. 195.3 masl and Elev. 194 masl and generally slopes to the north. Surface water runoff from the road and bridge deck is flows towards the north, and also down the embankment side slopes towards a watercourse located next to the Trans Canada Trail, beneath the bridge structure.

The watercourse passing through the site below the bridge drains into Wye Marsh located approximately 700 m west of the Site. Hog Bay is located approximately 1.5 km east and northeast of the Site, Tiffin Basin is located approximately 2.6 km northwest of the Site and Wye River which connects Tiffin Basin to Wye Marsh, is located 1.7 km northwest of the Site. Locally, groundwater is expected to flow to the west towards Wye River, Tiffin Basin and Wye Marsh and east towards Hog Bay. These hydrologic features and their location with respect to the Site are shown in the Hydrologic Features map in Appendix A.

3.3 Regional Physiography and Geology

Based on published geological information for the area, the Site falls within the Simcoe Uplands physiographic region. The overburden at the Site is composed of foreshore and basinal coarse-textured glacioclustrine deposits consisting of sand and gravel, minor silt and clay.

The bedrock at the Site is of the Bobycageon Formation, which is comprised of medium to thick-bedded limestone. Based on historic borehole information from the Minstry of Northern Development, Mines, Natural Resources and Forestry (MNRF) and Water Well Records in the vicinity of the Site from the Ministry of the Environment, Conservation and Parks (MECP), the depth to bedrock at vicinity of the Site is approximately 24.7 m. Geologic mapping illustrating the Site and the Study Area is provided in Appendix A.

The geological and hydrogeological conditions in the vicinity of the Site were also assessed based on the MECP well records, attached in Appendix B. The MECP well locations are presented in Figure 2.

3.4 Regulatory Mapping

Per Conservation Ontario mapping, the Site does not fall within the jurisdiction of any conservation area, as such it is not regulated.

The Site is fully located within the Severn Sound watershed of the South Georgian Bay Lake Simcoe Source Protection Region. According to the Source Protection Information Atlas, the Site does not fall within a wellhead protection area or a highly vulnerable aquifer. It is noted that the northern limits of the Site constitute as a significant groundwater recharge area (SGRA) under the Clean Water Act, indicating that aquifer recharge in the area is dependent on rainfall infiltration. It is noted that the area adjacent west of the Site is a Natural Heritage System with wetlands and woodlands. Wye Marsh, located approximately 700 m west of the Site, is considered a regionally significant life science area per the MNRF.

Due to the presence of a SGRA within the Site or study area, dewatering and construction activities on Site must adhere to the applicable requirements under the Clean Water Act.

3.5 Groundwater Resources

The MECP records of wells located within approximately 500 m of the Site (Appendix B) were reviewed to assess the general nature and use of the groundwater resource in the area. A summary of the data obtained from this review is presented below. It should be noted that enforcement of the "*Ontario Water Resources Act, R.R.O. 1990, Regulation 903*" increased the number of wells that were tagged and recorded within the last 10 years creating a bias in the number of wells recorded by the MECP during this period.

Well Construction

	Wells finished in bedrock Wells finished in overburden Total	1 23 24
Well Uses		
	Monitoring/Test Hole	6
	Domestic	17
	Unknown/Not Used	1
	Livestock	0
	Municipal	0
	Public Supply	0
	Dewatering	0
	Commercial	0
	Industrial	0
	Total	24
Well Depth		
	Less than 15 m	7
	15 to 30 m	1
	Greater than 30 m	1
	Unknown or no well	15
	Total	24

According to the MECP well records, two decommissioned municipal wells are present in the Study Area. The MECP well locations are presented in Figure 2.

Based on water well records in the local area and previous investigations completed at the Site, the approximate depth to groundwater varies from 1.8 to 25 m below ground surface. Locally, the groundwater level is expected to follow the topography and groundwater flow is west towards the Wye Marsh. Regionally, groundwater is expected to flow north towards Georgian Bay. Site features are presented in Figures 3.

In an attempt to obtain private well records for properties within the vicinity of the Site, a private well survey was carried out on April 13, 2021. Private wells were either capped, decommissioned, or access was not provided by the owners. Based on the site observations, it is anticipated that the majority of the properties within the vicinity of the Site are serviced with a combination of municipal water and private wells. It is expected that the lack of response/access received may be because of the ongoing coronavirus (COVID-19) pandemic.

3.6 Results of Subsurface Investigation

The fieldwork for this project was carried out on May 7, 2021 after obtaining utility clearances and permits. The work was performed in accordance with the lane closure times specified by the County of Simcoe and the Township of Tay. The subsurface investigation consisted of the completion of the following:

Two boreholes (BH1 and BH2) were drilled north and south of the Old Fort Road Bridge, within the right of way of Old Fort Road to an approximate depth of 9.4 m below existing grade and both boreholes were instrumented with monitoring wells at depth.

The two boreholes were located as close to the future abutments as practically possible, while allowing for safe drilling operations and also avoiding drilling into existing structures. The boreholes were drilled with a truck-mounted drill rig operated by specialist drilling contractors. Terraprobe's staff observed and recorded the drilling, sampling and in-situ testing operations and logged the boreholes. Soil samples were obtained using a 50 mm outside diameter split spoon sampler in conjunction with Standard Penetrating Testing. The recovered soil samples were visually inspected and recorded in the field and placed in labelled plastic containers for further laboratory testing and analysis including natural moisture content and grain size distribution analysis.

Groundwater conditions in the open boreholes were observed during the drilling operations. Standpipe piezometers consisting of a 50 mm diameter PVC pipe with a slotted screen were installed in Boreholes 1 and 2 to permit longer term groundwater level monitoring.

Details of the encountered soil stratigraphy are presented on the Borehole Logs, in Appendix C, and an overall description of the site stratigraphy is provided below. It should be noted that the stratigraphic boundaries shown on the borehole logs are inferred from non-continuous soil sampling and represent transitions between soil types rather than exact planes of geological change. The subsurface conditions will vary between and beyond the borehole locations.

In summary, flexible pavement and fill material consisting of gravelly sand fill overlying a layer of sand fill, were encountered at the Site. The native overburden deposits consist of sand, soft clayey silt and silty sand to silt and sand.

3.6.1 Pavement Structure

Both Terraprobe boreholes were completed within the right of way of Old Fort Road within the project area. A flexible pavement consisting of asphaltic concrete, underlain by granular material was encountered. Pavement composition on Old Fort Road ranged from approximately 65 to 200 mm layers of asphalt, with a granular base/subbase approximately 65 mm in thickness.

Thurber drilled BRDG-01 and BRDG-02 through the deck of the existing bridge, encountering a 225mm thick concrete layer.

3.6.2 Earth Fill

Gravelly sand fill underlain by a layer of sand fill was encountered at this Site. Thurber encountered sand fill at ground surface in TUN-01 and TUN-02. The fill extended to a maximum depth of 3.0 m. Rock fragments were noted in the fill layer. The soils were noted to be generally brown and moist with occasional black and orange mottling.

Borehole ID	Fill Thickness (m)	Fill Depth (m)	Fill Base Elevation (masl)
BH 1	2.8	2.9	192.3
BH2	2.8	2.9	191.2
BRDG-01	0.6	5.2	188.7
BRDG-02	2.2	7.2	188.4
TUN-01	2.1	2.1	185.0
TUN-02	0.7	0.7	186.4

The locations, thicknesses, depths and base elevations of the fill are summarized in the following table.

3.6.3 Sand

A native sand deposit was encountered below the fill in the Terraprobe borehole BH2 and also in the Thurber boreholes BRDG-01 and BRDG-02. The sand layer contained some silt and trace to some gravel. The sand was noted to be wet and loose. A layer of gravelly sand was encountered in BH2, underlying the clayey silt. The location, thickness, depth and base elevation of the sand deposit are summarized in the following table.

Borehole ID	Thickness (m)	Depth (m)	Base Elevation (masl)
BH 2	1.1	4.0	190.2
BH 2	1.4	7	187.2
BRDG-01	0.9	6.1	188
BRDG-02	1.1	8.3	188.4

3.6.4 Clayey Silt

A layer of clayey silt was encountered at the Site. The clayey silt was brown, moist and soft. The locations, thicknesses, depths and base elevations of the clayey silt deposits are summarized in the following table.

Borehole ID	Thickness (m)	Depth (m)	Base Elevation (masl)
BH 1	1.1	4.0	191.3
BH 2	1.6	5.6	188.6

3.6.5 Silty Sand Till

Silty sand to sandy silt till deposits were encountered at this Site. The sands were noted to be grey and wet. The locations, thicknesses, depths and base elevations of the silty sand deposits are summarized in the following table.

Borehole ID	Thickness (m)	Depth (m)	Base Elevation (masl)
BH 1	5.3	9.3*	186.0
BH 2	2.4	9.4*	184.8
BRDG-01	9.3	15.4	178.7
BRDG-02	5.7	14	181.7
TUN-01	8.7	10.8	176.2
TUN-02	7	7.7	179.3

*Borehole termination depth

3.7 Groundwater Levels

Groundwater conditions were observed in the boreholes during and upon completion of drilling. Boreholes 1 and 2 were each instrumented with a 50 mm diameter standpipe piezometer. Summarized below are the groundwater levels that were measured on separate visits after the completion of drilling.

Borehole ID	Data	Water Levels	
Borenoie ID	Date	Depth (m)	Elevation (masl)
BH1	May 17, 2021	3.7	191.6
	May 25, 2021	3.8	191.5
BH2	May 17, 2021	5.6	188.6
	May 25, 2021	5.7	188.5

The readings taken in the piezometers are stabilised water levels. However, the groundwater level can be expected to fluctuate seasonally and after severe weather events. As part of the study, water levels were measured in Thurber's BRDG-01 and BRDG-02, but were not relied upon as the well depths were measured to be 11.3 m and 9.6 m, respectively, compared to Thurber's reported well installation depths of 15.2 m and 13.7 m. Historical water levels at the two monitoring wells were measured by Thurber at 187.8 masl in BRDG-01 and 189.9 masl in BRDG-02.

3.8 Aquifer Performance Tests

The hydraulic conductivities of the subsurface soil surrounding the screened monitoring well zones were estimated based on single well response tests. This test involves the rapid removal of water or addition of a "slug" which displaces a known volume of water, from a single well and then monitoring the water level in the well until the well has recovered. This test was carried out in BH1 and BH2. The single well response test data were analysed using the Bouwer and Rice method and the results of the analysis are presented in Appendix E. The hydraulic conductivities of the strata are:

Borehole ID	Well Screen Elevation	Screened Formation	Hydraulic Conductivity (m/s)
BH1	189.2 to 186.2	Sandy Silt to Silt and Sand	2.13 x 10 ⁻⁷ ±
BH2	188.1 to 185.1	Silty Sand	1.06 x 10⁻ ⁶ ±

Documented values within Freeze and Cherry (1979)¹ for typical hydraulic conductivity of the investigated strata are:

•	Gravelly Sand (Fill)	10 ⁻³ m/s to 10 ⁻⁵ m/s
	Silty Sand to Sandy Silt	10 ⁻⁴ m/s to 10 ⁻⁷ m/s

The hydraulic conductivity of the subsurface soils at the Site was also estimated using grain size analysis. The estimated hydraulic conductivities are provided in the following table.

¹ Freeze, R. A. and Cherry, J. A. (1979). *Groundwater*. Published by Prentice Hall.

Location	Estimated Groundwater Elevation (m)	Estimated Hydraulic Conductivity (m/s)	
BH1	191.7	1 x 10 ⁻⁷ ±	
BH2	188.6	4.2 x 10 ⁻⁶ ±	

Based on a review of the hydraulic conductivities calculated from the rising head test and grain size analysis and comparison to the published values associated with the geological material tested, a design hydraulic conductivity of 2.13×10^{-7} ± was utilised for the sandy silt to silty sand soils for the purpose of dewatering calculations.

3.9 Groundwater Quality Assessment

A set of unfiltered groundwater sample was collected by Terraprobe and analyzed by SGS, Canada, a laboratory accredited by CALA, the Canadian Association for Laboratory Accreditation. The samples were collected directly from monitoring well BH2 on July 19, 2021.

The samples were analyzed for the following parameters:

Provincial Water Quality Objectives (PWQO)

The exceedances with respect to PWQO criteria, are presented in table below. A copy of the Certificate of Analysis and a chain of custody record for the sample are included in Appendix F.

Parameter	Unit	BH2 Groundwater Quality Results	Provincial Water Quality Objective Limits	RDL *
Cobalt	µg/L	0.925	0.9	0.004
Copper	µg/L	4.3	1	0.2
Iron	µg/L	1960	300	7
Lead	µg/L	1.17	1	0.01
Phosphorous	mg/L	0.080	0.01	0.003

*Reported Detection Limit

Exceedances for Cobalt, Copper, Iron, Lead and Phosphorous were detected in groundwater samples obtained from BH2. If the short-term dewatering effluent is intended to be discharged to any surface water body, pre-treatment will be required to reduce the elevated parameters to meet compliance with the PWQO criteria.

3.10 Site Inspection to Assess Hydrogeological Features

A detailed inspection of the Site was conducted on April 13, 2021 to assess the presence of features that are significant from a hydrogeological view point. In particular, the Site was inspected to assess the following:

• The presence of drainage features or depressions that may allow for ponding and significant or enhanced water infiltration.

Areas of seasonally high groundwater levels and/or water courses that may receive groundwater discharge and seepage.

The results of the inspection indicate that there is a watercourse crossing within the Site, below the bridge which drains into the Wye Marsh. Terraprobe expects that the water level in the watercourse will vary seasonally and with storm events. The topography of Old Fort Road generally slopes towards the north and the Trans Canada Trail topography generally slopes to the east. The forward slopes at each bridge abutment extend downwards towards the paved Trans Canada Trail. It is anticipated that surface water runoff from the road and the bridge flows towards the north and off the embankment side slopes towards the watercourse located beneath the bridge. The areas surrounding the Site are covered with vegetation and domestic wells were observed during the site reconnaissance, but no access was provided.

4.0 DISCUSSION AND ANALYSIS

4.1 Summary of Hydrogeological Conditions

The results of the investigation indicate the following hydrogeological features:

- Private potable water supply wells exist within the study area.
- The northern extent of the Site and the study area are noted to be within a SGRA, indicating that aquifer recharge in the area is dependent on rainfall infiltration.
- Soils at the Site can be characterized as deposits of fill overlying a thin layer of clayey silt overlying silty sand to sandy silt deposits.
- Stabilized groundwater levels at the Site were observed at an elevation of 191.6 masl (depth of 3.7 m below existing grade) at the north section of the Site and at an elevation of 188.7 masl (depth of 5.6 m below existing grade) at the southern section of the Site.
- Based on a review of the in-situ test results, the grain size analysis and published hydraulic conductivities for the investigated soils, the hydraulic conductivity considered for sandy silt to silty sand soils is 2.13 x 10⁻⁷ m/s.

4.2 Construction Details

Spread footing construction details for the new bridge are tabulated below.

Footing ID	Location	Ground Surface Elevation (masl)	Estimated Excavation Base Elevation (masl)	Design Groundwater Elevation (masl)
North	10+566.295	193.707	At or below 186.875	188.6
South	10+596.295	194.485	At or below 187	191.6

The footings will be constructed in open cut excavations with a maximum excavation side slope geometry of 1H:1V as per the geotechnical recommendations in Thurber's report. Horizontal over-excavations, at the excavation base, of up to 2.0 m in plan area were considered to facilitate footing construction and it was assumed that surface water within the watercourse will be protected and cut off from construction activities or temporarily diverted via a temporary culvert/cofferdam.

The footing data used for dewatering assessments are provided in the following table.

Footing ID	Width (m)	Length (m)	Plan Area of Excavation (m ²)
North	20	15.2	304
South	28	17.8	498.4

4.3 Construction Dewatering Volumes

Based on the excavation geometries as well as the subsurface soil and groundwater data, dewatering volumes were calculated based on the assumption that the groundwater table will be drawn down and maintained at a depth of 0.5 m below the base of excavations to permit construction in reasonably dry conditions. The dewatering conditions are summarized in the following table:

Footing ID	Location	Design Groundwater Elevation (masl)	Bottom of Excavation (masl)	Dewatering Groundwater Target (masl)
North	10+566.295	191.6	186.875	186.375
South	10+596.295	191.6	187	186.5

Numerical analysis was conducted for the short-term dewatering scenario utilizing Slide 7.014, released March 30, 2016 and developed by Rocscience Inc. This computer software programme utilizes the finite element numerical modelling method. The estimated discharge quantity for short-term (construction) dewatering assumes simultaneous construction of both bridge footings and that the watercourse flowing underneath the bridge would be cut off from construction activities or temporarily diverted via temporary culvert/cofferdam arrangements.

The short-term control of groundwater should take into account storm water management from rainfall events which will have to be removed from open excavations. A 37 mm design 2-year storm event is used in the analysis based on information obtained from the Ontario Ministry of Transportation's (MTO) IDF curve lookup tool and data for the Site.

The estimated dewatering volume for simultaneous abutment excavations is approximately 29,500 L/day and the precipitation from a 2-year design storm event is approximately 86,500 L/day. Therefore, it is estimated that the total dewatering volume is 116,000 L/day.

As required by Ontario Regulation 63/16, a plan for discharge must consider the conveyance of storm water from a 100-year storm. The additional volume that will be generated in the occurrence of a 100-year storm event is approximately 233,000 L/day.

Based on the estimated dewatering volume, a posting to the MECP Environmental Activity and Sector Registry (EASR) will be required. Posting to the EASR is required for construction dewatering activities ranging from 50,000 L/day to less than 400,000 L/day.

4.4 Assessment of Potential Impacts

4.4.1 Zone of Influence

The conceptual Zone of Influence (ZOI) for dewatering, also known as Radius of Influence (R_0), was calculated based on the anticipated maximum drawdown required and the geometric mean hydraulic conductivity. The following equation (Sichardt's equation) was used.

Equation: $R_0 = 3000^* dH^* K^{0.5}$ Where R_0 is the radius of influence
dH is the drawdown (m)
K is the hydraulic conductivity (m/s)

The calculated ZOI for short-term (construction) for each footing excavation is approximately ±15 m. The zone of influence is expected to be of limited extent and does not include structures, buildings and associated private servicing (i.e. private water supply wells and septic beds). The watercourse noted within the Site is within the zone of influence. Dewatering activities may affect the water level within the watercourse in the short term and monitoring is recommended prior to, during and post dewatering to ensure minimal impacts to the watercourse.

Potential sources of contamination were not noted within the anticipated zone of influence (i.e. underground fuel tanks, dry cleaning operations, fuel storage). Due to the presence of a watercourse and the classification of the northern bounds of the Site as a SGRA, dewatering and construction practices should adhere to the requirements of the Clean Water Act.

4.4.2 Geotechnical Considerations

The Site is located partially within a rural area consisting largely of vegetated fields. The anticipated zone of influence for the surrounding area in which dewatering will occur is not expected to include existing structures and buildings.

Settlement of structures and underground services are not expected to be a major concern because of the limited extent of the zone of influence of the expected dewatering works and the lack of structures and underground services within the zone of influence. The potential for settlement and ground loss can be mitigated by ensuring that the dewatering system is designed to preclude the transport and removal of sediment and fine soils.

4.4.3 Surface Water, Wetlands and Areas of Natural Significance

A watercourse to Wye Marsh crosses the Site and as indicated previously, the groundwater control activities will result in localized drawdown of the groundwater table. Since tributary crossings are situated within the zone of influence, there is a potential that the nearby surface water features will be affected by the dewatering activities. Monitoring of surface water bodies is recommended during construction and mitigation measures (such as reducing the discharge rate, installing a barrier along the perimeter of the excavation to reduce effects on the groundwater, halting dewatering to assess whether the water body will recover, etc.) should be implemented if significant impacts are observed within surface water bodies. Monitoring should include visual inspections, total suspended solids, water depths, and flow rates.

There is also a potential for the surface water to contribute to additional dewatering volumes due to higher infiltration rates near the water course. Since the aquifer to be dewatered is unconfined, the additional contribution of water may affect the dewatering volume substantially during precipitation events. Groundwater is also expected to flow towards the watercourse within the Site locally and north towards Georgian Bay regionally. It is expected that the majority of surface run-off will be directed to the watercourse.

4.4.4 Local Wells and Zone of Influence

Local municipal and/or private wells were not identified within the expected zone of influence of dewatering works. The dewatering zone of influence is expected to be minimal and will not impact wells that may be present in the vicinity of the Site.

4.5 Construction Issues

It is recommended that the following issues be considered:

- Carry out an additional well survey to assess baseline water levels and groundwater quality for private water supply wells situated within a 500 m radius of the Site prior to the start of dewatering; and
- The dewatering contractor shall prepare a contingency plan to mitigate the effects of construction dewatering on nearby watercourses. The plan should include the determination of baseline water level and water quality parameters for the watercourse and continued monitoring of the watercourse as well as mitigation measures, if any effects are noted.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The following dewatering requirements are expected given the conditions for bridge replacement and improvements at the Site:

- Dewatering is anticipated to be required for both the north and south abutments footings of the proposed bridge and it is envisaged that open cut excavations will be required extending to undisturbed competent native soils.
- The estimated water taking volume from excavations required to install the north and south footings simultaneously is approximately 29,500 L/day. The dewatering system should also be designed to accommodate a typical 2-year design storm event (37 mm rainfall event) which will generate approximately 86,500 L/day, hence resulting in a total anticipated dewatering volume of approximately 116,000 L/day.
- Construction dewatering activities will require a posting to the Ontario Ministry of the Environment Conservation and Parks (MECP) Environmental Activity and Sector Registry (EASR). Posting to the EASR is required for construction dewatering activities where the dewatering volume is more than 50,000 L/day and less than 400,000 L/day.
- Construction dewatering activities will not require an application to the Ontario Ministry of the Environment Conservation and Parks (MECP) for a Permit to Take Water (PTTW). A PTTW is only required for dewatering volumes that exceed 400,000 L/day.
- The dewatering zone of influence is approximately ±15 m measured horizontally from the perimeter of open excavations. Potential sources of contamination are not expected within dewatering zones of influence.

In addition to the foregoing the following issues should be considered prior to and during construction.

The design of a dewatering system and associated sediment control plan is the contractor's responsibility. It is anticipated that dewatering can be achieved by pumping from strategically placed filtered sumps within the base of excavations. The contractor shall also take into consideration pretreatment of the groundwater prior to discharge.

- Survey private wells within the study area to assess baseline water levels and groundwater quality within a 500 m radius of the Site prior to the start of dewatering; and
- Measurement of water level and water quality parameters for the watercourse prior to and during dewatering and the development of a contingency plan to mitigate the effects of dewatering, if any.

6.0 LIMITATIONS AND RISK

6.1 Procedures

This investigation has been carried out using investigation techniques and engineering analysis methods consistent with those ordinarily exercised by Terraprobe and other engineering practitioners, working under similar conditions and subject to the time, financial and physical constraints applicable to this project. The discussions and recommendations that have been presented are based on the factual data obtained by Terraprobe.

It must be recognized that there are special risks whenever engineering or related disciplines are applied to identify subsurface conditions. Even a comprehensive sampling and testing program implemented in accordance with the most stringent level of care may fail to detect certain conditions. Terraprobe has assumed for the purposes of providing design parameters and advice, that the conditions that exist between sampling points are similar to those found at the sample locations. The conditions that Terraprobe has interpreted to exist between sampling points can differ from those that actually exist.

It may not be possible to drill a sufficient number of boreholes or sample and report them in a way that would provide all the subsurface information that could affect construction costs, techniques, equipment, and scheduling. Contractors bidding on or undertaking work on the project should be directed to draw their own conclusions as to how the subsurface conditions may affect them, based on their own investigations and their own interpretations of the factual investigation results, cognizant of the risks implicit in the subsurface investigation activities so that they may draw their own conclusions as to how the subsurface conditions may affect them.

6.2 Changes in Site and Scope

It must also be recognized that the passage of time, natural occurrences, and direct or indirect human intervention at or near the Site have the potential to alter subsurface conditions. Groundwater levels are particularly susceptible to seasonal fluctuations.

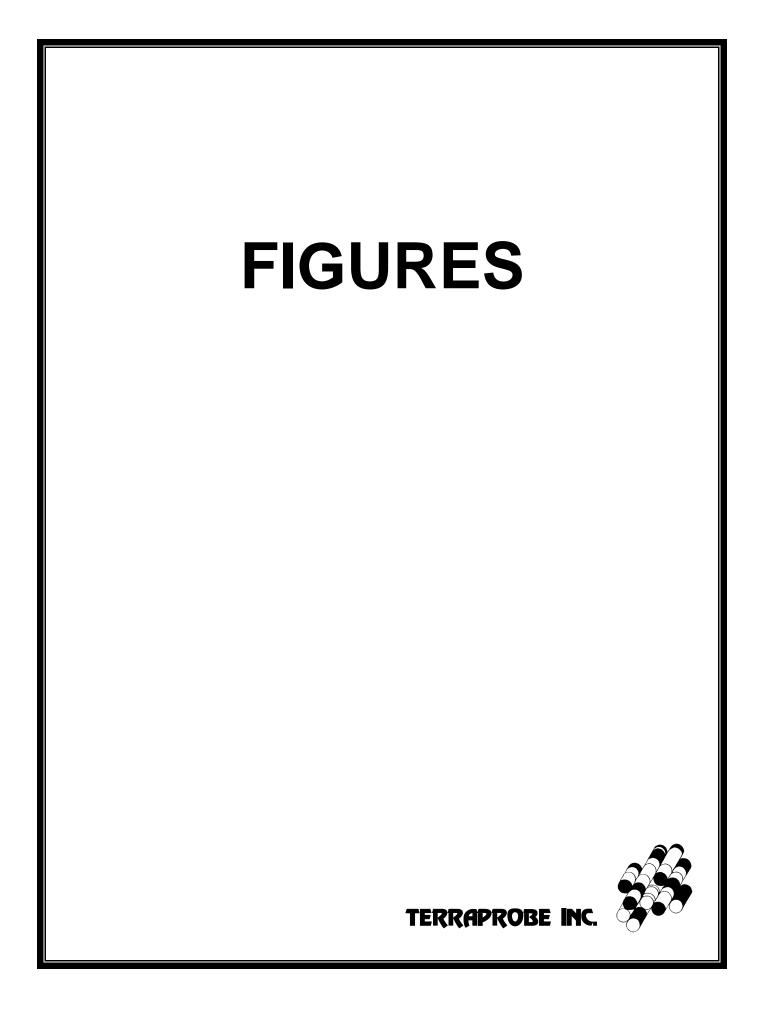
The discussion and preliminary recommendations are based on the factual data obtained from investigations made by Terraprobe and are intended for use by the owner and its retained designers in the design phase of the project. If there are changes to the project scope and development features the interpretations made of the subsurface information, the geotechnical design parameters and comments relating to constructability issues and quality control may not be relevant or complete for the revised project. Terraprobe should be retained to review the implications of such changes with respect to the contents of this report.

This report was prepared for the express use of the County of Simcoe, Lea Consulting Ltd., and its retained design consultants. This report is copyright of Terraprobe Inc. and no part of this report may be reproduced by any means, in any form, without the prior written permission of Terraprobe Inc. The County of Simcoe, Lea Consulting Ltd. and their retained design consultants are authorized users with permission to extract or summarize text from this report.

Terraprobe Inc.

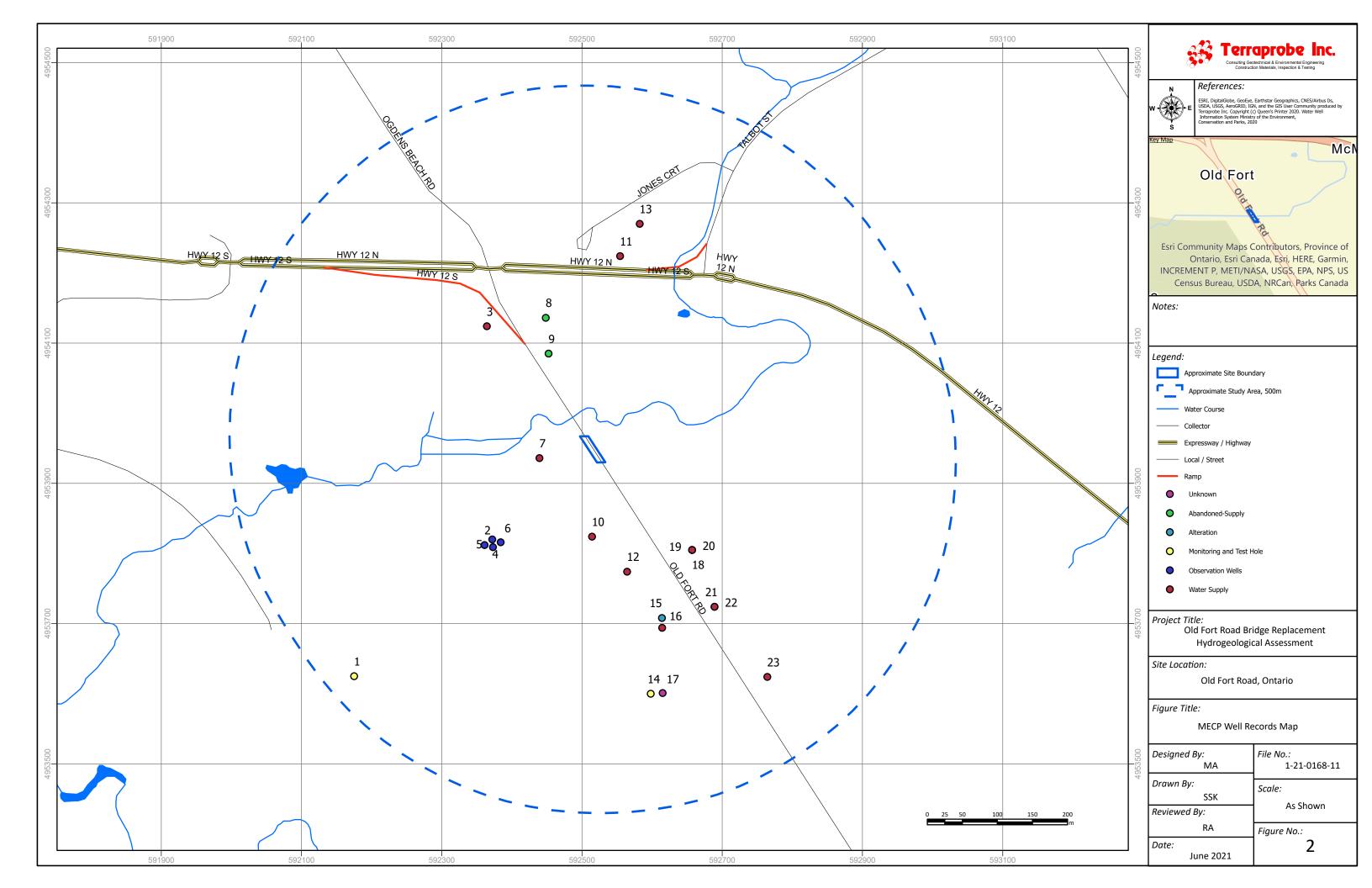
D. Neku

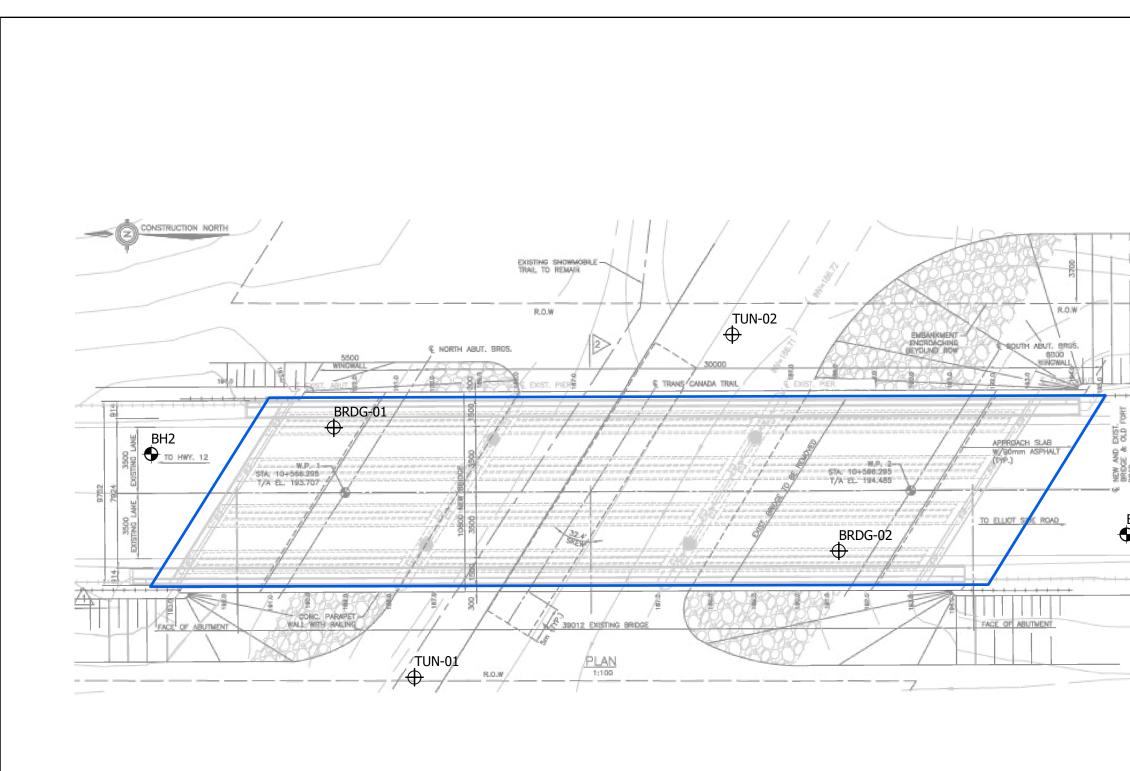
Mariam Al Gailani, E.I.T.


Amar Neku, Ph.D., P.Eng., P.Geo.

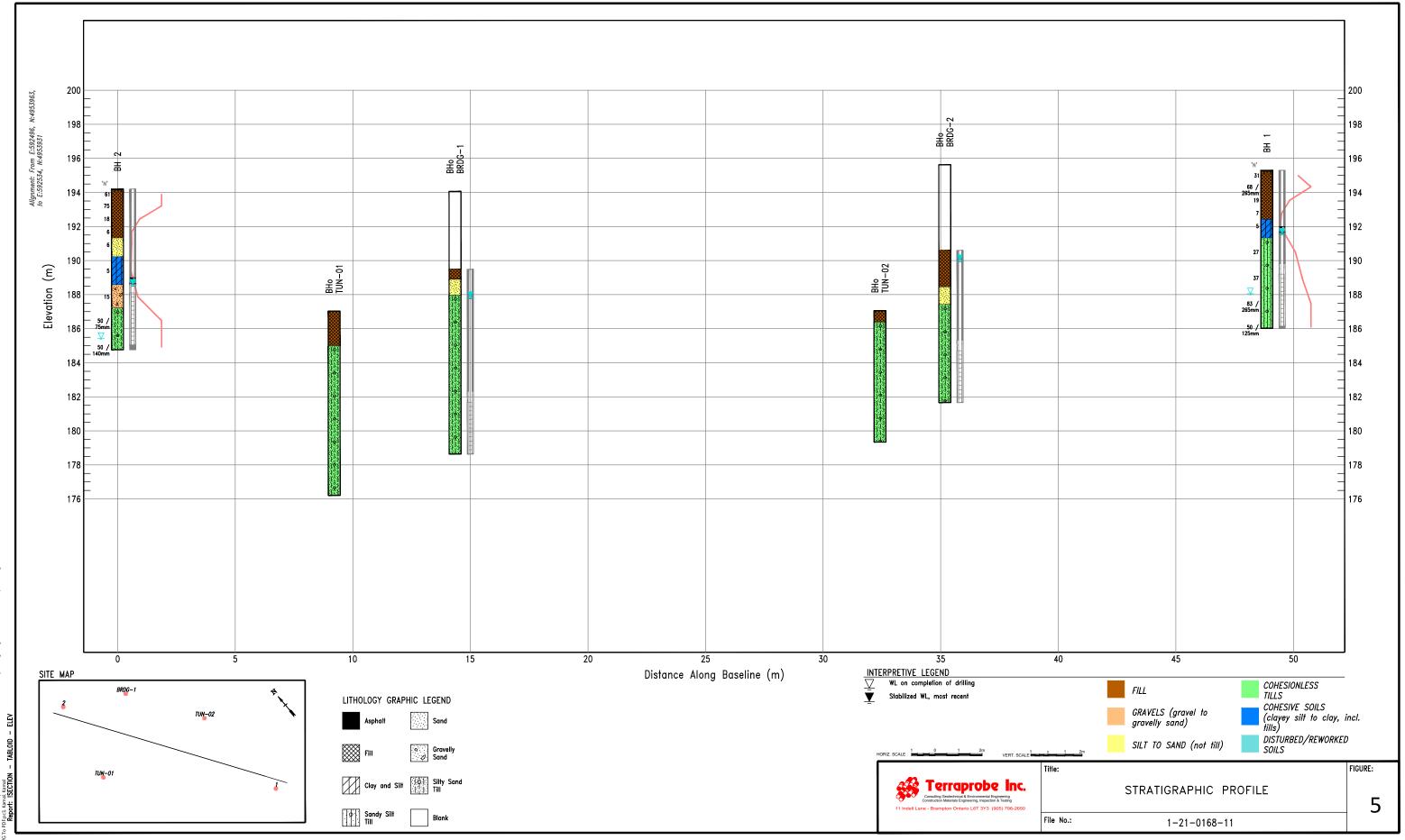
Dr. Giorgio Garofalo, P.Geo., QP_{ESA} Sr. Hydrogeologist / Sr. Project Manager

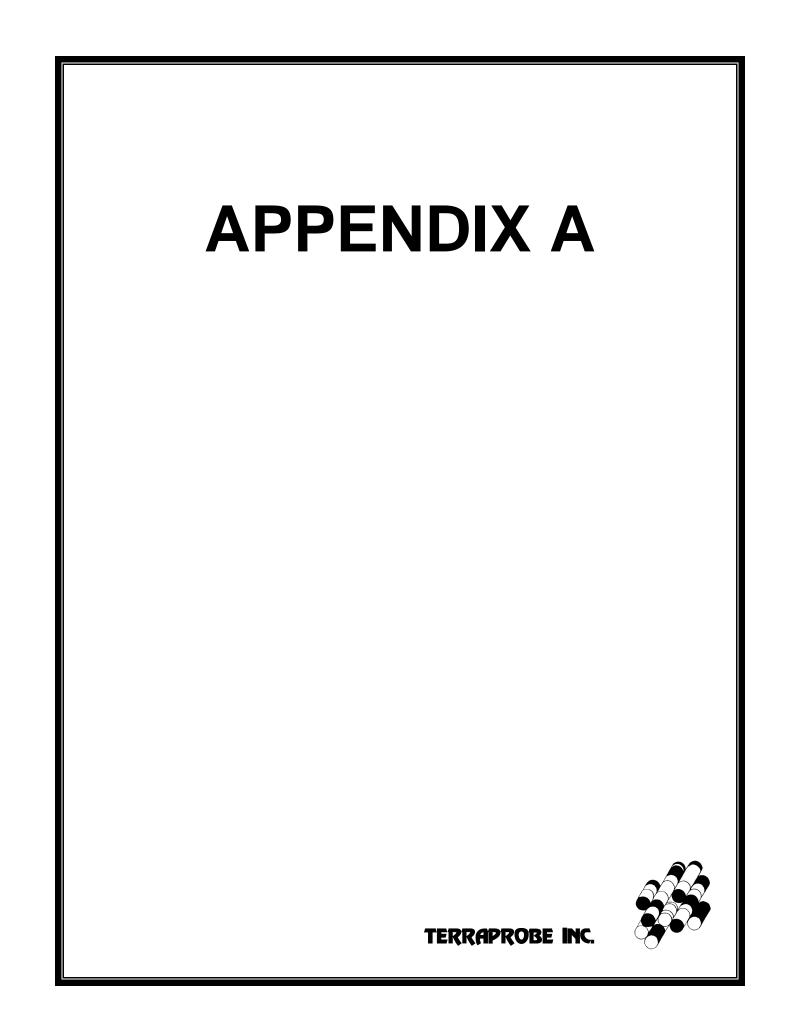
ohman Al

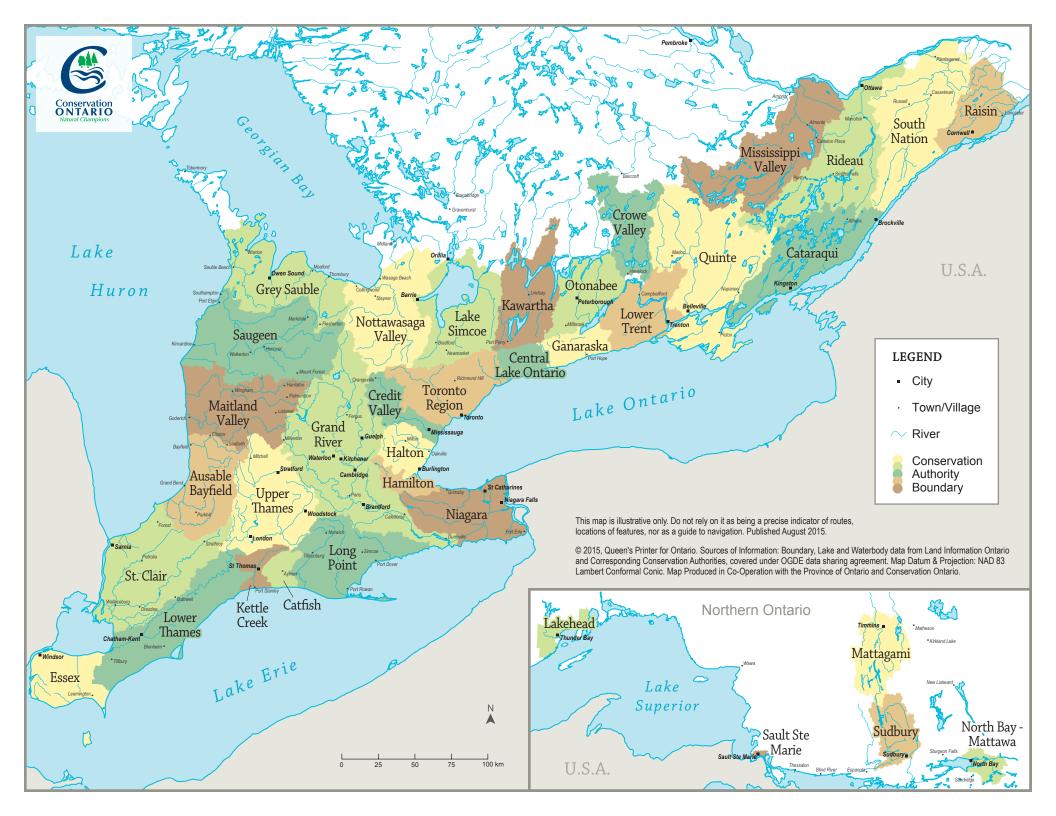

Rehman Abdul, P.Eng. Principal

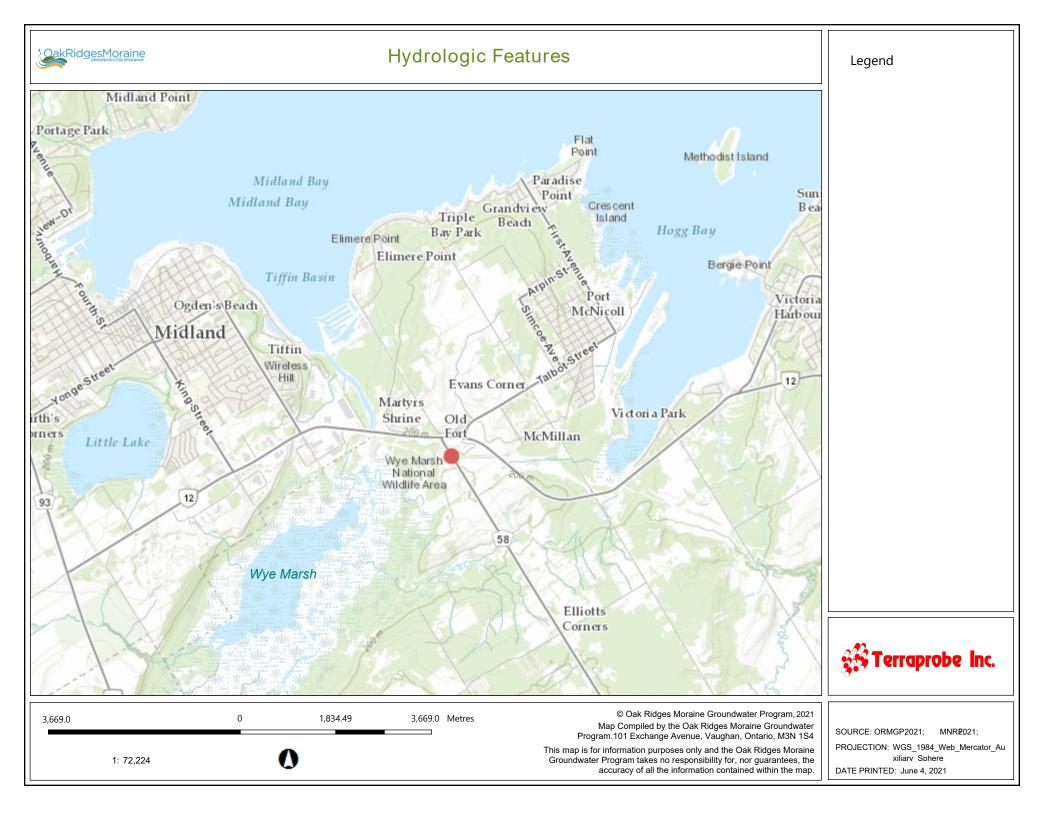


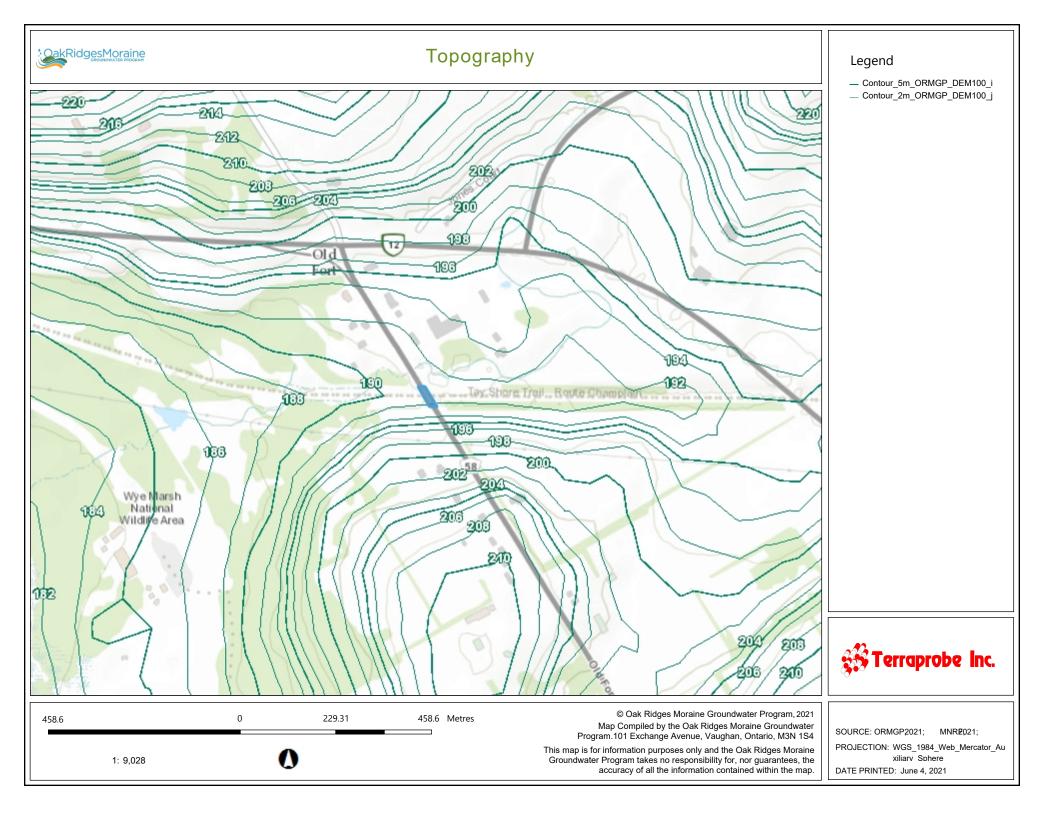
17	954100	N References: ESRI, DigitalGlobe, Get	DEVec, Earthstar Geographics, CNES/ 5, AeroGRID, IGN, and the GIS User
	4954000	Ontario, Esri Car INCREMENT P, METI/NA	Contributors, Province of hada, Esri, HERE, Garmin, ASA, USGS, EPA, NPS, US IA, NRCan, Parks Canada
	4953900	Legend:	ndary
	00	Hydrogeologi Site Location: Old Fort Roa Figure Title: Site Locati	
80 100 Meters Garmin, INCREMENT P, , NRCan, Parks Canada	4953800	Designed By: MA Drawn By: SSK Reviewed By: RA Date: June 2021	File No.: 1-21-0168-11 Scale: As Shown Figure No.: 1

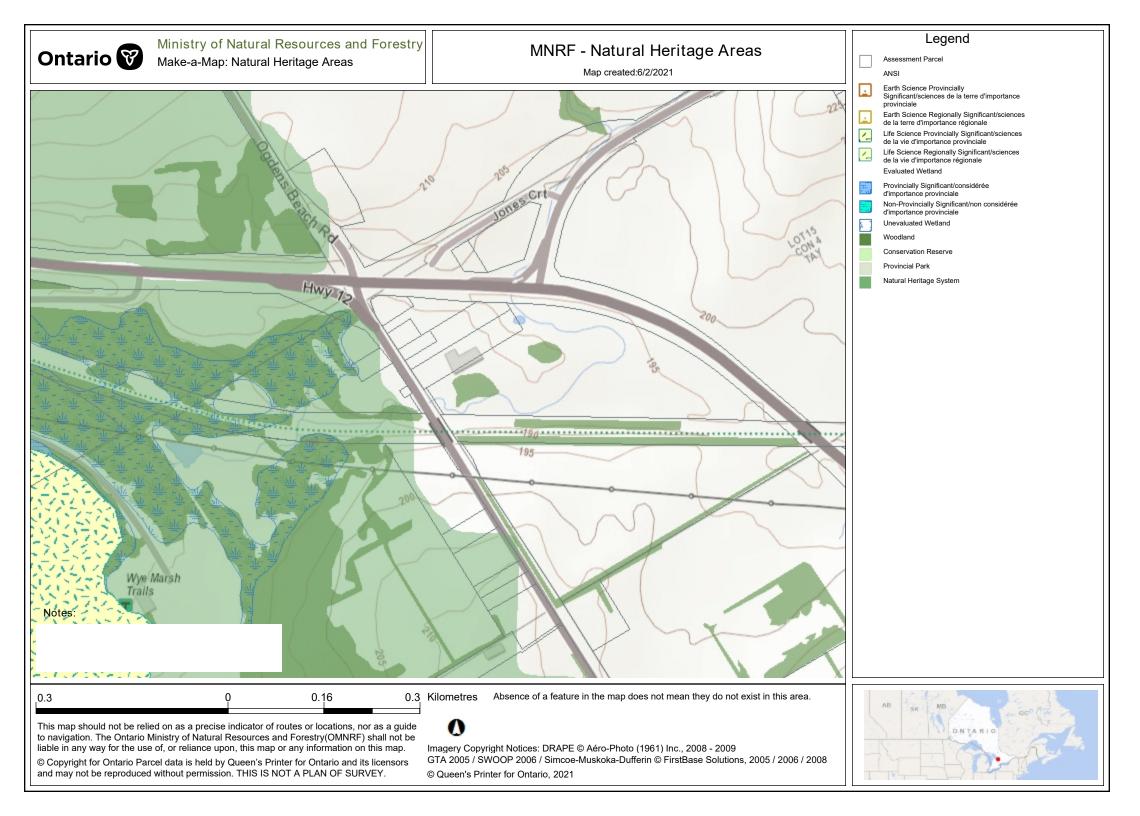


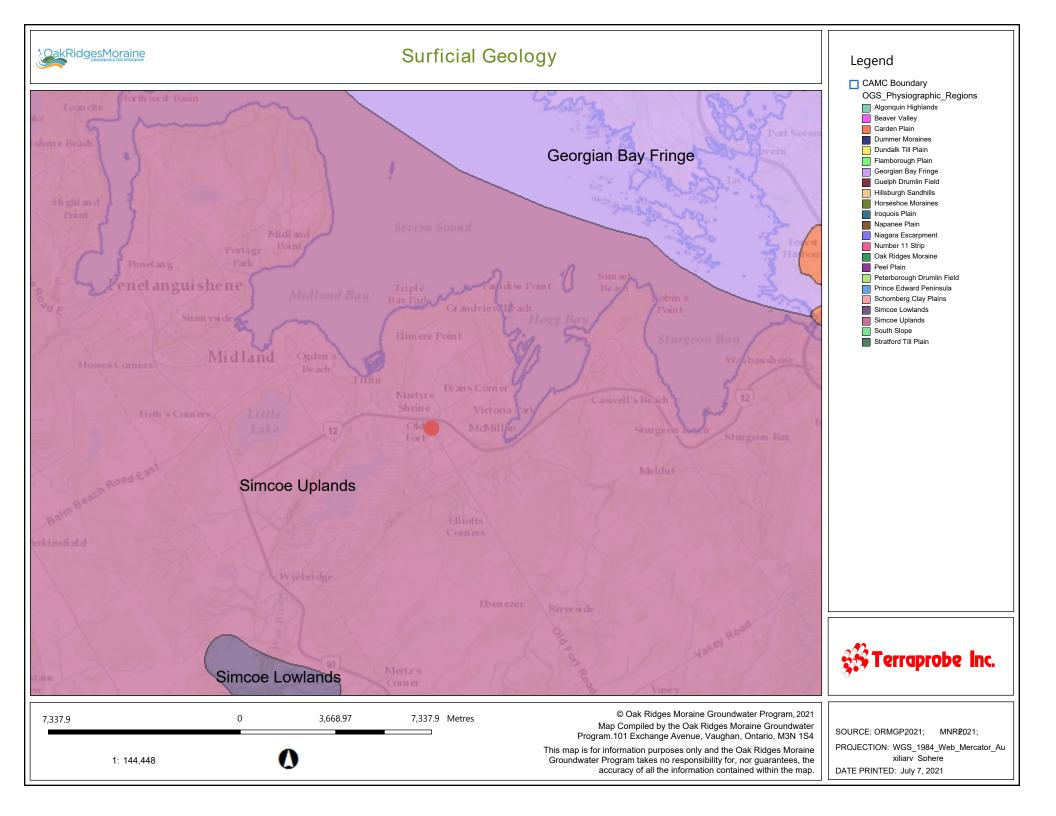


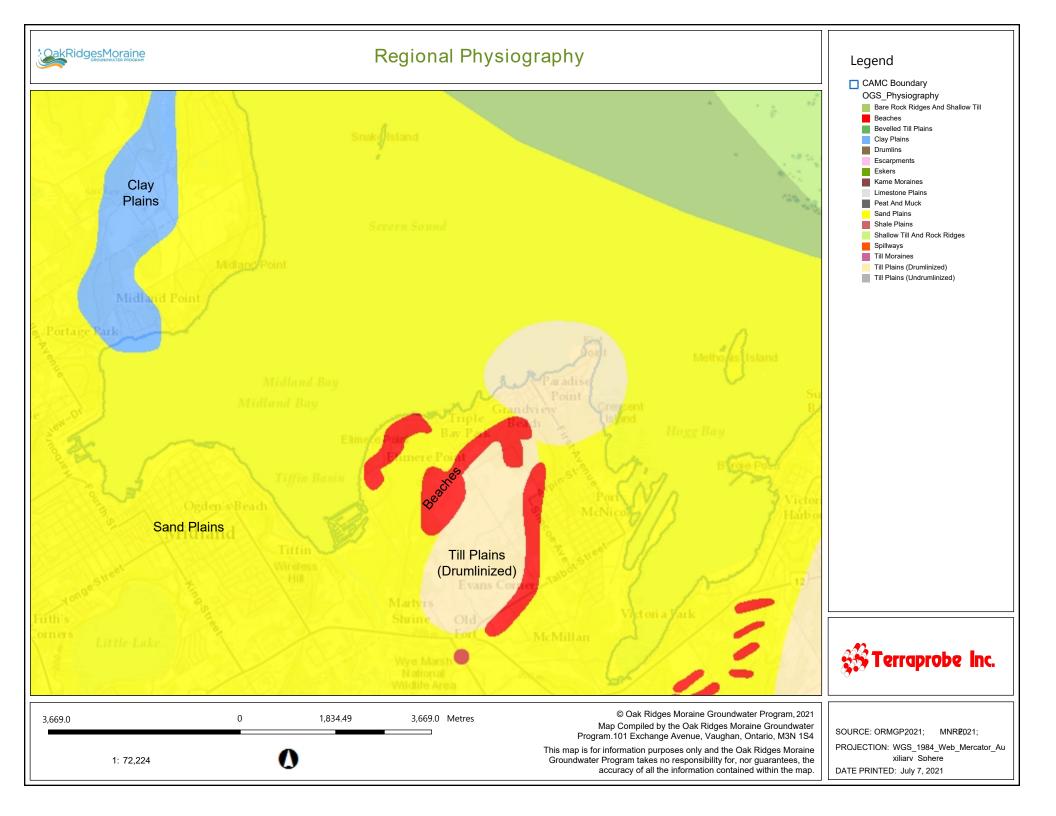


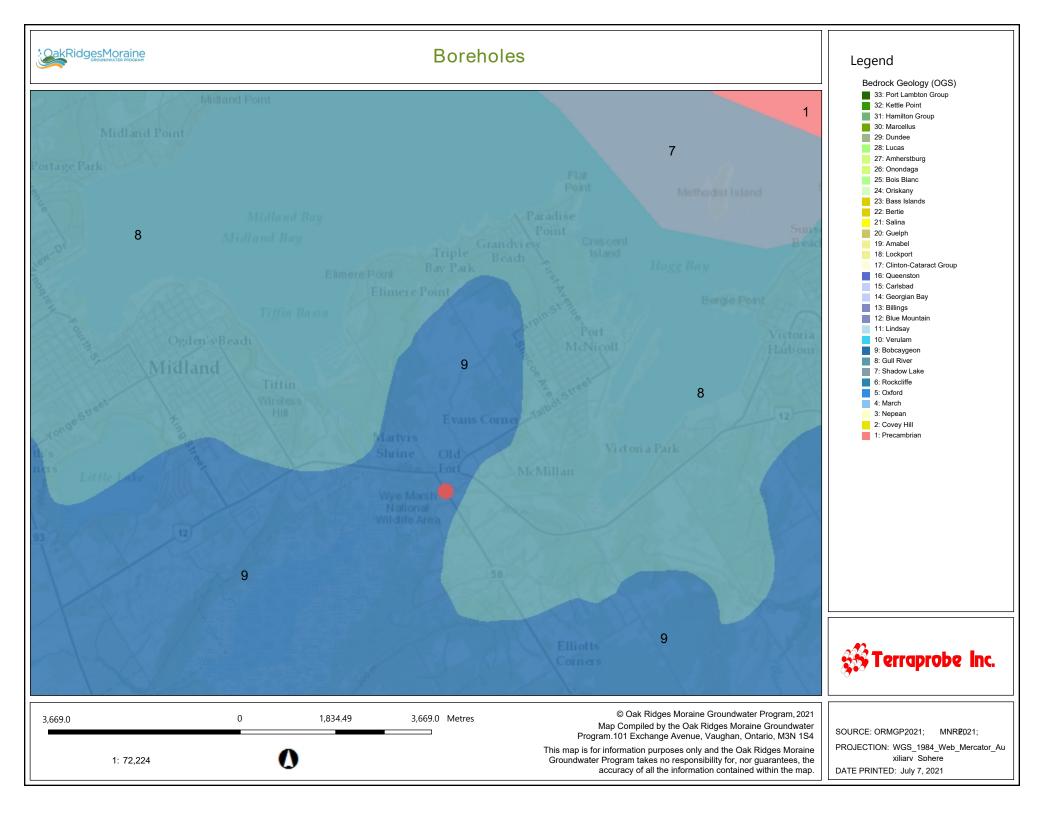

0 1 2 3 4 5 10

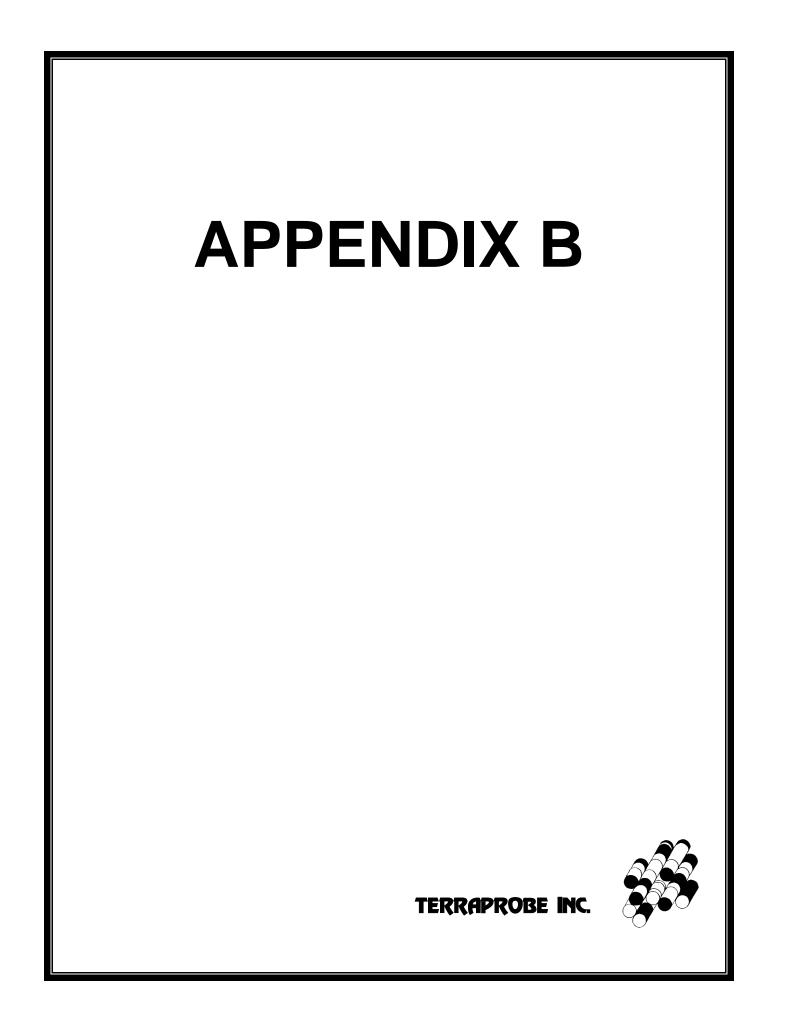

	Construction Materials, Inspection & Testing
	References: Old Fort Road Bridge Date: Jan 2021 Dwg 1
	Ê
	Esri Community Maps Contributors, Province of Ontario, Esri Canada, Esri, HERE, Garmin, INCREMENT P, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, NRCan, Parks Canada
	Notes:
	Legend: Approximate Site Location Or Borehole Location; Terraprobe
0008	Borehole Location; Thruber
BH1	
	Project Title: Old Fort Road Bridge Replacement Hydrogeological Assessment
	Site Location: Old Fort Road, Ontario
	Figure Title: Borehole and Monitoring Well Plan
	Designed By: File No.: MA 1-21-0168-11
15 m	Drawn By: SSK Reviewed By: SSK As Shown
	RA Figure No.: Date: 4
	June 2021

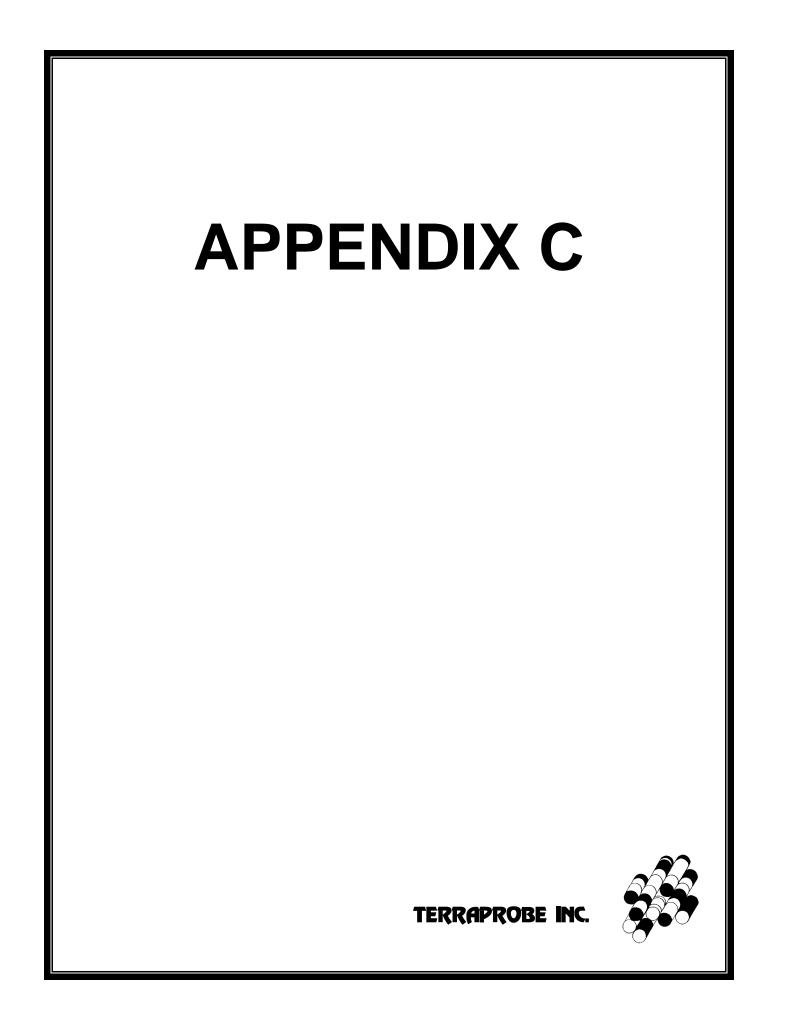












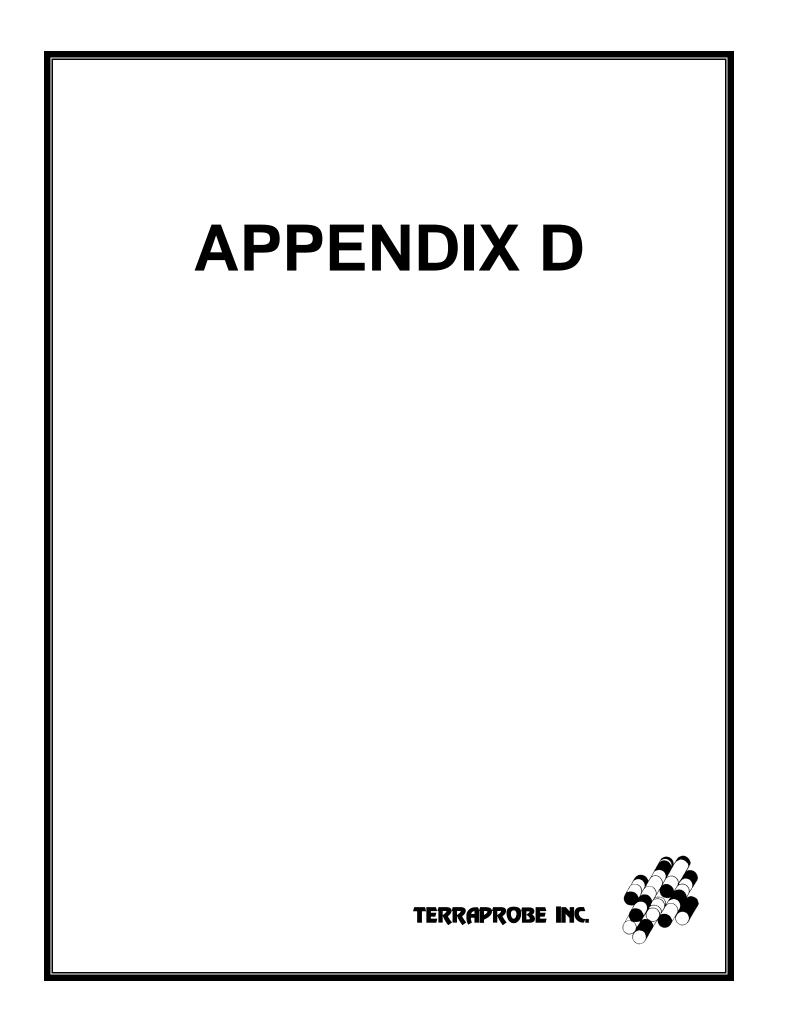
									Water_Found_Dept		Depth_from_			SCRN_END_DEPTH_		qryConstructionMethod_M
WELL_ID	BORE_HOLE_ID	ĸ	y	ELEVATION	Final_Status	Use1	Use2	DATE_COMPLETED	h_M	Static_Lev_M	М	Depth_to_M	SCRN_TOP_DEPTH_M	М МЕТ	THOD OTHER_METHOD	ETHOD
7236420	1005294430	592175	4953625	187.436004	Monitoring and Test Hole	Monitoring and Test Hole		12/17/2014						Dire	ect Push	Direct Push
7308839	1007013116	592361	4953812		Observation Wells	Monitoring		2/21/2018			0) 4.5	1.5	5 4.5 Bori	ing	Boring
5713597	10391338	592364.3	4954124	193.872177	Water Supply Observation	Domestic		8/15/1976	17.08	1.83				Cabl	ble Tool	Cable Tool
7308838	1007013113	592372	4953820		Wells Observation	Monitoring		2/21/2018			0	9 4.5	1.5	5 4.5 Bori	ing	Boring
7308840	1007013119	592373	4953809		Wells Observation	Monitoring		2/21/2018			0	4.199999809	1.20000048	4.199999809 Bori	ing	Boring
7308863	1007013188	592384	4953816		Wells	Monitoring		2/22/2018			0) 4.5	1.5	5 4.5 Bori	ing	Boring
5703922	10381812	592439.3	4953936	191.114318	Water Supply Abandoned-	Domestic		2/11/1967	30.805	8.235			30.195	31.11 Cabl	ble Tool	Cable Tool
5726593	10404178	592448.3	4954136	194.443145		Domestic		4/9/1990	71.675	13.725				Rota	ary (Air)	Rotary (Air)
5726594	10404179	592452.3	4954085	192.752502		Domestic		4/18/1990	28.06					Rota	ary (Air)	Rotary (Air)
5714227	10391960	592514.3	4953824	200.27452	Water Supply	Domestic		1/20/1968	83.57	21.655				Cabl	ble Tool	Cable Tool
5707646	10385486	592554.3	4954224	198.577621	Water Supply	Domestic		8/12/1970	46.055	5.185				Cabl	ble Tool	Cable Tool
5710921	10388735	592564.3	4953774	203.796264	Water Supply	Domestic		11/22/1973	100.65	25.01					nvent.)	Rotary (Convent.)
5726389	10403977	592582.3	4954270	198.93338	Water Supply	Domestic		2/12/1990	34.16	16.775				Rota	ary (Air)	Rotary (Air)
7236417	1005294421	592598	4953600	211.330078	Monitoring and Test Hole	Monitoring and Test Hole		12/17/2014							ect Push	Direct Push
7274405	1006287976	592614	4953708	209.896881	Alteration	Domestic		9/14/2016						Othe Met	ner thod WELDER	Other Method
5707707	10385546				Water Supply	Domestic		9/23/1970	25.315	14.335			25.315	26.23 Cabl	ble Tool	Cable Tool
7220634	1004771766	592615	4953601	211.386917				10/18/2013 7/30/2007						Rota	ary	
7050575	23050575	592657	4953805	204.040802	Water Supply	Domestic			85	18.5	25	85		(Con Rota	nvent.) arv	Rotary (Convent.)
7050575	23050575	592657	4953805	204.040802	Water Supply	Domestic		7/30/2007	85	18.5	7	25			nvent.)	Rotary (Convent.)
7050575	23050575	592657	4953805	204.040802	Water Supply	Domestic		7/30/2007	85	18.5	0) 7			nvent.)	Rotary (Convent.)
7050574	23050574	592689	4953724	206.961151	Water Supply	Domestic		6/29/2007	12		0	6			nvent.)	Rotary (Convent.)
7050574	23050574	592689	4953724	206.961151	Water Supply	Domestic		6/29/2007	12		6	5 14			nvent.)	Rotary (Convent.)
5708634	10386463	592764.3	4953624	206.098495	Water Supply	Domestic		9/24/1971	10.775	10.065				Cabl	ble Tool	Cable Tool
5711160	10388968	592864.3	4953474	200.589996	Water Supply	Domestic		5/27/1974	7.625	4.27			9.15	5 10.065 Cabl	ble Tool	Cable Tool

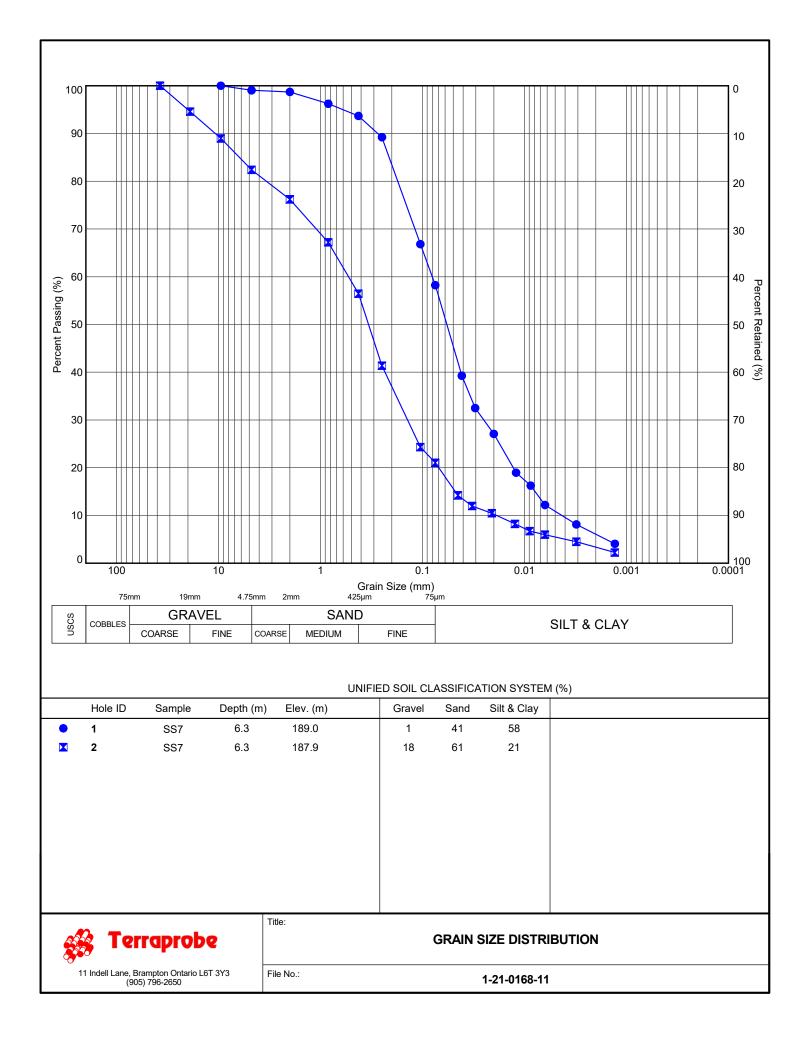
	Terraprobe												LC)G	O	FE	30R	EH		E 1
Proje	ect No. : 1-21-0168-11		C	lient	: L	.ea Co	onsult	ting Ltd									0	rigina	ted by	: OH
Date	started : May 7, 2021		Pı	rojec	t : C)ld Fc	ort Roa	ad									(Compi	led by	: MA
Shee	et No. : 1 of 1		Lc	ocatic	on : S	imco	e Cou	inty										Check	ked by	: RA
Positic	on : E: 592528.0, N: 4953925.0 (UTM	17T)			F	Elevatio	on Datu	ım : Geode	tic											
Rig typ	pe : Track-mounted		—			Drilling	Method			0							1			
	SOIL PROFILE	\square	s	SAMPL		NS	ALE	DYNAMIC CC RESISTANCE	NE PEN	IETRA	ΓION		PLAST LIMIT	MOIS	JRAL TURE	LIQUID LIMIT				_
ELEV DEPTH (m) 195.3	DESCRIPTION GROUND SURFACE	STRAT PLOT	NUMBER	ТҮРЕ	SPT 'N' VALUE	GROUND WATER CONDITIONS	ELEVATION SCALE	SHEAR STRE O UNCON O QUICK	ENGTH (NFINED TRIAXIA	(kPa)	80 10 + FIELD × LAB V 80 10) VANE	W _P	CONT w C TER CO		WL	LINN ONIT MEIGHT KN/m ³		REMARKS & GRAIN SIZ DISTRIBUTIO (%)	E
<u>195.3</u> 195.1 0.2	65mm ASPHALTIC CONCRETE		1	SS	31		195			Ĺ			h						UR J	A SI UL
	65mm FILL, sand and gravel				<u> </u>		100						Ĭ							
	trace rock fragments, trace asphalt, very dense to compact, dark brown,		2	SS	68 / 265mm								0							
	moist to wet						194				+									
			3	SS	19								0							
192.4	gravelly sand, trace rock fragments, loose		4	SS	7		193						C							
2.9	CLAYEY SILT to SILTY CLAY, firm, brown, moist		5	SS	5		102													
					۲, I		192													
<u>191.3</u> 4.0						Ţ	191													
	(GLACIAL TILL)	0	6	SS	27								c	>						
		0					190													
		0																		
			7	SS	37		189							0					14	41 52 6
		B					188						<u> </u>					¥		
			8	SS	83 /									0						
		4			265mm		187													
		8		'			·													
186.0 9.3			9	SS	50 / 125mm									0						
-	END OF BOREHOLE				12000				Dá	W. ate	ATER L Wat	LEVEL ter Dep			evatior	n <u> (m)</u>				
	Monitoring well installation consists of a 50mm diameter schedule 40 PVC pipe with a 3.0m slotted screen.								May 17 May 25	7, 202	1	3.7 3.8		• _	191.6 191.5	6				
	Unstabilized water level measured at 7.3 m below ground surface; borehole was open upon completion of drilling.																			

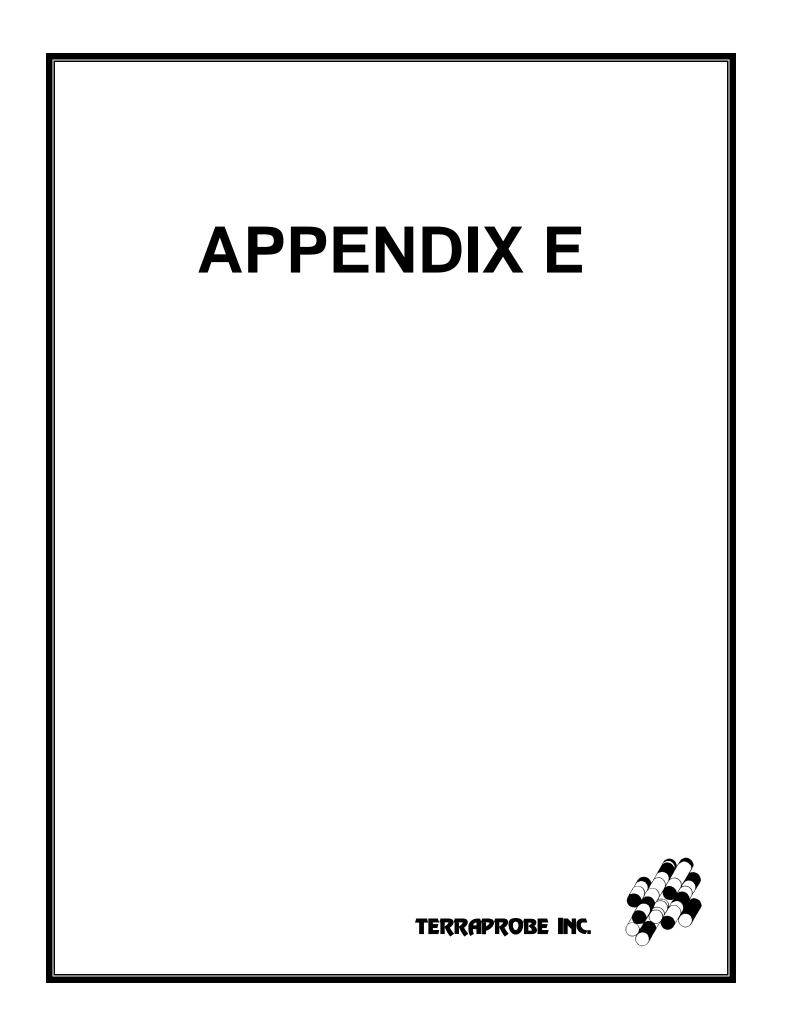
Originated by : O	0									g Ltd	onsulti	ea Co	: L	ient	CI		68-11	ct No. : 1-21-016	roje
Compiled by : M	(rt Roa	ld Fo	t : O	oject	Pr		2021	started :May 7, 20	ate
Checked by : R										y	e Cou	imcoe	on : S	catio	Lc			No. :1 of 1	hee
									etic	: Geode	n Datur	levatio	E			17T)	953971.0 (UTN	: E: 592503.0, N: 49	ositio
										: Hollow	Method	Drilling I						e : Track-mounted	g typ
REMARKS	ᆫᄂ	LIQUID	TURAL STURE		PLAS1 LIMIT		TION		E PLOT	YNAMIC CO ESISTANCE	ALE	ATER NS		AMPL	S		FILE	SOIL PROFIL	
& GRAIN SIZE DISTRIBUTION (%)	NUIT MEIGHT KN/m ³	w _L T (%)		TER C	w _P I	VANE	+ FIELI × LAB	(kPa) AL	ENGTH NFINED	HEAR STRE	ELEVATION SCALE	GROUND WATER CONDITIONS	SPT 'N' VALUE	ТҮРЕ	NUMBER	STRAT PLOT	ION	DESCRIPTIC	<u>LEV</u> PTH m)
GR SA SI	KIN/ITI	30	20 :	10		00	80 1	60	40	20 4	194					****	ONCRETE	GROUND SURFACE	94.2 94.0
					0								61	SS	1		ce to some	65mm FILL, sand and gr FILL, gravelly sand, trace	0.2
					0						193		75	SS	2			rock fragments, trace silt to compact, brown, mois	
					0								18	SS	3				
				0							192		6	SS	4		s, some clay,	sand, some silt seams, brown	
																××××	gravel, loose,	SAND, some silt, trace g	01.3 2.9
sampler wet at 3.0m				0							191		6	SS	5			brown, wet	
											190						CLAY , soft,	CLAYEY SILT to SILTY (brown, moist	90.2 4.0
)	46 C											5	SS	6			210111, 11000	
											189								88.6
											100					• C	ne silt,	GRAVELLY SAND, some compact, grey, wet	5.6
18 61 18				2 C	(188		15	SS	7	 			
											187						y, trace	SILTY SAND, trace clay, gravel, very dense, grey,	87.2 7.0
													50 /	SS	8	0	,,	(GLACIAL TILL)	
											186		\ <u>75mm</u> /			0			
Ā														_		0			
				0							185		50 / 140mm	SS	9			silt and sand	<u>84.8</u> 9.4
		6	6 <u>Elevatio</u> 188. 188.		oth (m	LEVEL ter Dep 5.6 5.7	<u>Wa</u> 1	W <u>Date</u> 17, 202 25, 202	May								dule 40 PVC	END OF BOREHOLE Monitoring well installatio a 50mm diameter schedu pipe with a 3.0m slotted s	0.4

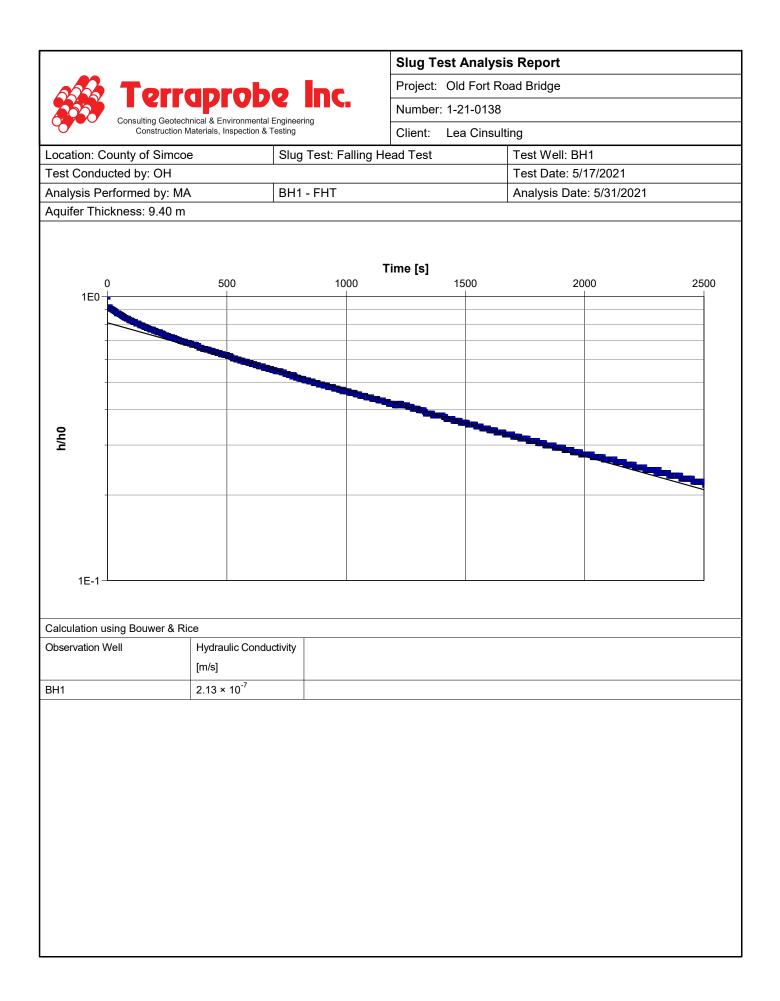
			RE	CO	RE) ()F	BOREHOLE BE	RDG-01		
	OJEC		-	eplacer	mer	nt				Project I	No. 28556
	CATIC	•	ario							SHEET	1 OF 2
		TED : May 28, 2020				١	٧4	953 964.0 E 592 515.9			Geodetic
		SOIL PROFILE			SA	MPL		COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲		
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100 1 1 1 1		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
┝──┤		GROUND SURFACE CONCRETE (BRIDGE DECK): (225mm)		194.06 0.00							
	Hollow Stem Augers	AIR SAND, some gravel, trace silt, very loose, brown, moist: (FILL) SAND, silty, some gravel to gravelly, compact, grey, moist to wet, with occasional silt seams SILT, sandy to SAND, silty, trace to some gravel and clay, very dense, grey, moist, with cobbles and boulders: (TILL)		0.23 189.49 4.57 188.86 5.20 187.97	1	SS	17 100/ 0.150 63	Grain Size Analysis: Gr 24%/Sa 52%/Si 20%/ Cl 4%			Stick-Up Well Protector Set In Concrete
- 9 -			<i>a</i> 0		6	SS	100/ 0.200	Grain Size Analysis: Gr 7%/ Sa 43%/ Si 46%/ Cl 4%	φ		
╞──┤		GROUNDWATER ELE		L	⊥ S						
		$\overline{\nabla}$ water level upon co				Ţ		/ATER LEVEL IN WELL/PIEZ ay 30, 2020	OMETER LOGGED : MP CHECKED : KF		THURBER

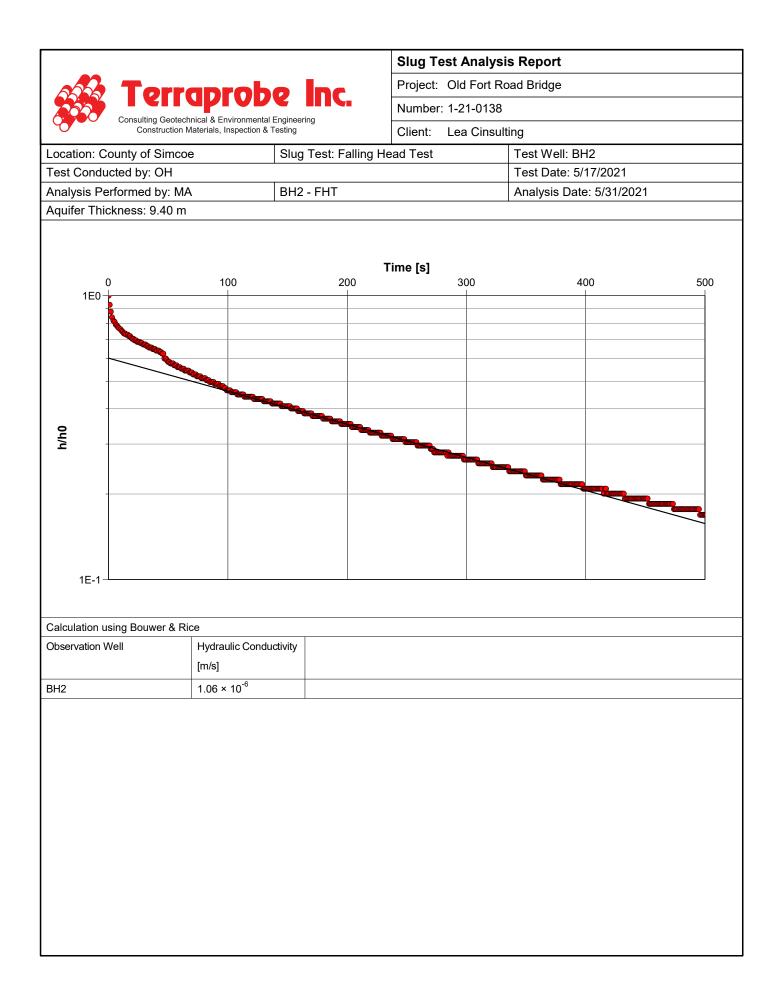
LOC STA CON		N : County of Simcoe, Ont	-	ELEV. DEPTH (m)	A NUMBER	N		253 964.0 E 592 515.9 COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100 1 1 1 1 1		Sł D/ Q - X Cpen A 120 160 1 PERCENT	IEET 2	o. 28556 POF 2 Geodetic PIEZOMETER OR STANDPIPE INSTALLATION
DEPTH SCALE (metres) - 11		TED : May 28, 2020 SOIL PROFILE		DEPTH	NUMBER	MPLE	ES	COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80	DA Q - X Cpen ▲ 120 160 I I r, PERCENT WI	TUM	Geodetic PIEZOMETER OR STANDPIPE
-10 - - - - - - - - - - - - -				DEPTH	NUMBER		-	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80	120 160 Г, PERCENT wl	ADDITIONAL LAB. TESTING	OR STANDPIPE
-10 - - - - - - - - - - - - -		DESCRIPTION		DEPTH		ТҮРЕ	BLOWS/0.3m	\geq	40 80	120 160 Г, PERCENT wl	ADDITIONAL LAB. TESTIN	OR STANDPIPE
- - - - 11 - -	ν ν		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7					<u> </u>		
- 13 million - 13 - 13 - 14 - 14 - 15 - 15 - 16 - 17 - 18 - 17 - 18	Holiow Stem Augers	END OF BOREHOLE AT 15.42m. Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen. WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) May 28/20 12.25 181.81 May 30/20 6.30 187.76		178.65 15.42	8	SS	.250	Grain Size Analysis: Gr 14%/Sa 58%/ Si 23%/ CI 5%				Filter Sand
		GROUNDWATER ELE \overline{Y} water level upon co				Ţ	, - W Ma	ATER LEVEL IN WELL/PIEZC		ED : MP		

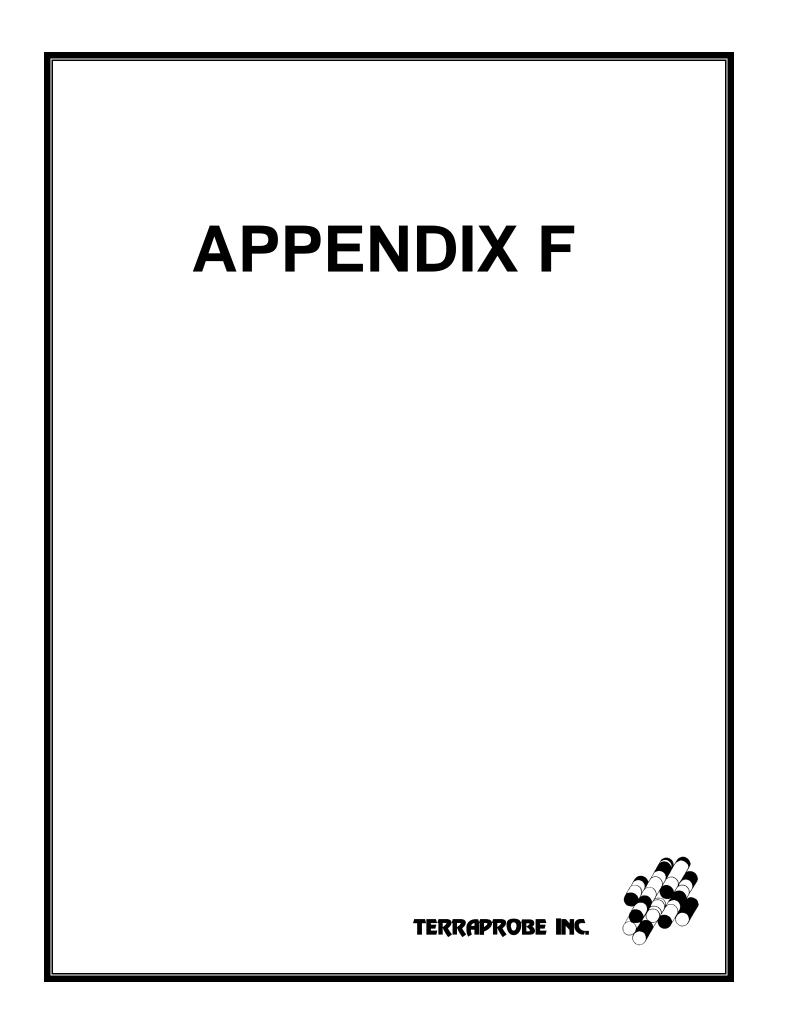

			RE	CO	RE) (DF	BOREHOLE	BRD)G-	02					
	ROJEC		-	eplacer	ner	nt								F	Project N	No. 28556
	CATIC	•	ario											c	HEET	
		TED : May 30, 2020				I	N 4	953 927.7 E 592 512.3								Geodetic
	Q	SOIL PROFILE			SA	MPL		COMMENTS		Sł	IEAR S	RENGT	TH: Cu, K Q - Cpen	Pa		
DEPTH SCALE (metres)	BORING METHOD		STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRA RESISTANCE PLOT	.TION	4 WA	0 8 ATER C	0 1 L DNTENT	20 1 -, PERCE	160 	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE CONCRETE (BRIDGE DECK): (225mm)	4	195.63 0.00												
	Hollow Stern Augers	AIR SAND, some gravel, trace silt, loose to very loose, brown, moist, occasional organic inclusions: (FILL) SAND, silty, some gravel to gravelly, compact, grey, wet, occasional silt seams SILT, sandy to SAND, silty, trace to some gravel and clay, very dense, grey, moist, occasional cobbles and boulders: (TILL)		0.23 190.60 5.03 188.43 7.20	1 2 3 4	ss ss ss ss		Grain Size Analysis: Gr 23%/Sa 35%/ Si 35%/ Cl 7%		0						Stick-Up Well Protector Set In Concrete
TEL-28		GROUNDWATER ELE			⊢ `											
THURBER2S						1		VATER LEVEL IN WELL/ lay 30, 2020	/PIEZOM	ETEI	٦	LOGGE CHECK		MP KF		THURBER


			RE	CO	RE) (DF	BOREHOLE BF	RDG-02		
	ROJEC		-	eplacer	mer	nt				Project I	No. 28556
	TARTE	-	ano							SHEET	2 OF 2
C	OMPLE	TED : May 30, 2020				1	N 4	953 927.7 E 592 512.3		DATUM	Geodetic
Щ	Б Ч	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	μŞ	
DEPTH SCALE (metres)	- BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 WATER CONTENT, PERCENT wp I 0 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
-10 -11 -11 -12 -12 -12 -13 -14 -14 -15 -16 -16 -17 -18 -17 -18 -18 -19	Tricone NQ Coring Hollow Stem Augers	END OF BOREHOLE AT 13.97m UPON PRACTICAL REFUSAL TO ADVANCE. WATER LEVEL AT 7.0 m UPON COMPLETION. Monitoring Well installation consists of 50mm diameter Schedule 40 PVC pipe with a 3.05m slotted screen. WATER LEVEL READINGS: DATE DATE DEPTH(m) ELEV.(m) May 30/20 5.69 189.93		181.66 13.97	9	RUN	102/ 0.27f	TCR=10% SCR=10%			Filter Sand
2		GROUNDWATER ELE					_				
		☑ WATER LEVEL UPON CO	OMPL	ETION	l	Ţ		/ATER LEVEL IN WELL/PIEZ ay 30, 2020	OMETER LOGGED : MP CHECKED : KF		THURBER


			R	RECC)R	D	0	F BOREHOLE TU	JN-0)1					
	ROJEC		-	Replace	mer	nt							F	Project N	No. 28556
	OCATI TARTE	•	ario										c		1 OF 2
		ETED : May 26, 2020				1	N 4	953 952.7 E 592 499.5							Geodetic
	8	SOIL PROFILE			SA	MPL	.ES	COMMENTS	s	HEAR S		GTH: Cu, I Q - Cpen	KPa		
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	W	10 	80	120 	160	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
ä	BOF		STR.	(m)	ž		BLC	20 40 60 80 100			20	30	40	₹ Y	
-		GROUND SURFACE SAND and SILT, trace to some gravel, compact to dense, brown, moist to wet, with organic inclusions: (FILL)		187.03 0.00	1	SS	13				0				
					2	SS	100/	Grain Size Analysis:		>					
- 1)			0.250	Grain Size Analysis: Gr 9%/ Sa 39%/ Si 44%/ Cl 8%							
ŀ				8											
				×.	3	SS	43			0					⊻
-2				184.97		33	43								-
ŀ		SILT, sandy to SAND, silty, trace to some gravel and clay, very dense, grey, moist, with cobbles and boulders: (TILL)	0	2.05											
Ţ.			0		4	SS	100/ 0.250		0						
			0												
- 3				Ż	5	ss	100/								
-						<u> </u>	0.250	Grain Size Analysis: Gr 2%/ Sa 38%/ Si 53%/ Cl 7%							
ŀ			0												
-4	s		D		6	SS	<u>100/</u> 0.100								
	Auger		σ												
ŀ	Hollow Stem Augers			2											
İ.	ollow :		0		7	SS	100/ 0.125		0						
- 5	Ť		o												
ł			4												
			0												
ŀ				2											
-6			0		8	SS	100/								
			0			SS	0.150								
ŀ			0												
- 7			a												
ľ				Ż											
ŀ			0												
i.			Q		9	SS	<u>100/</u> 0.100		0						
-8			0												
ŀ		Boulder from 8.2 to 8.9m	o												
[4	10			TOD 400% _ OOD _ 400%							
/20	бu		0		10	RUN		TCR=100% SCR=100%							
9 - 12 - 1	NQ Coring		0						1						
26.GP	ž		0		11	RUN		TCR=15% SCR=10%	1						
285			:0						1						
	<u> </u>	GROUNDWATER ELE	VA	TIONS	5	I	<u> </u>	1	!	I					
THURBERZS TEL-28556.GPJ 7/24/20		$\overline{ au}$ water level upon CC	OMP	LETION	I	1	Z v	ATER LEVEL IN WELL/PIEZO	METE	R	LOGG	ED :	MP		
THUR											CHEC	KED :	KF		THURBER
· •															


				R	ECC	R	D	0	F BOREHOLE TI	JN-()1					
		JEC		-	eplacer	mer	nt							F	Project N	lo. 28556
		ATIC RTEL	-	ario										c	SHEET 2	
			TED : May 26, 2020				I	N 4	953 952.7 E 592 499.5							Geodetic
	-		SOIL PROFILE			SA	MPL		COMMENTS	S	HEAR S		H: Cu, k			
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m		W.	40 8 ↓ ATER C /p ┣───	30 1 L ONTENT	20 1 	160 ENT wl	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	i	m I		ST	(,				20 40 60 80 100	1		20 ;	30	40	$\left \right $	
-10	-			ю												
-	ē															
ŀ	Tricone															
[176.20	12	SS	100/ 0.150		0						
- 11			END OF BOREHOLE AT 10.82m UPON PRACTICAL REFUSAL TO ADVANCE. BOREHOLE OPEN TO 7.72m AND		10.82			0.150								
ŀ			COMPLETION.													
			BOREHOLE BACKFILLED WITH BENTONITE TO SURFACE.													
-																
-12																
-																
-																
- 13																
-																
·																
-14																
-																
Į.																
- 15																
ŀ																
Į.																
-16																
ļ.																
-																
-																
- 17																
·																
-18																
-																
ŀ																
24/20																
- 19																
2 2			GROUNDWATER ELE												• •	
IHURBERZS 1EL-28556.GPJ //24/20			\overline{arphi} water level upon CC	OMPL	ETION		_	L v	ATER LEVEL IN WELL/PIEZO	OMETE	R	LOGGE CHECK		MP KF		THURBER
÷ L																INUKDĚK


				R	ECC)R	D	0	F BOREHOLE TI	UN-C)2					
		JEC		-	Replace	mer	nt							F	Project N	No. 28556
		ATIC RTEI		ario										S	HEET	1 OF 1
C		IPLE	TED : May 27, 2020				1	N 4	953 948.0 E 592 526.0						DATUM	Geodetic
ALE		DOH.	SOIL PROFILE			SA	MPL		COMMENTS	S	HEAR S nat V - rem V -		TH: Cu, K Q - Cpen	(Pa K	NG	
DEPTH SCALE (metres)		BORING METHOD	DECODIDEION	STRATA PLOT	ELEV.	BER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	4	0 8 	30 I	120 1 1 T, PERCE	60	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
DEP1		30RIN	DESCRIPTION	TRAT/	DEPTH (m)	NUMBER	12	SLOWS	20 40 60 80 100	w	р ——	—0 ^w		wl 40	ADD LAB.	INSTALLATION
	+		GROUND SURFACE	ى ا	187.06			ш								
F			SAND, some gravel to gravely, some silt to silty, loose, brown to black, moist, with orranic inclusion, occasional coal		0.00		SS	6			0					
ŀ			organic inclusion, occasional coal fragments: (FILL)		8	1	33	6								
			SILT, sandy to SAND, silty, trace to some gravel and clay, very dense, grey, ,moist, with cobbles and boulders: (TILL)	- XXX 0	186.38 0.69	1	00	100/								
- 1			with cobbles and boulders: (TILL)		4	2	33	0.250		0						
-																Ā
-					ž	3	SS	100/ 0.225		0	þ					<u> </u>
-2	and to	200		0	· .			0.220								-
-	tem A			0				100/								
Ì	Hollow Stam Aurars			Ø		4	SS	100/ 0.150		0						
	Ţ	-		o												
- 3					ž											
-						5	SS	100/ 0.275		C						
ŀ																
-4				Q		6		100/			þ					-
·				0	· . 			0.250								
l	_	_		6	4 	_		100/								
ŀ						7	SS	100/ 0.22 5			0					
- 5																
ŀ				0												
Ì				o												
-6				0												-
·				o		8	SS	100/ 0.200		0						
[Tricona				4											
	1 in															
- 7					 4											
-				0					Grain Size Analysis:							
l	╞		END OF BOREHOLE AT 7.72m UPON	:[0]	179.34 7.72	9	SS	<u>100/</u> 0.100	Gr 9%/ Sa 40%/ Si 43%/ Cl 8%	С						
-8			PRACTICAL REFUSAL TO ADVANCE. BOREHOLE OPEN TO 6.10m AND WATER LEVEL AT 1.50m UPON													-
			COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG TO SURFACE.													
ŀ			BENTONITE HOLEPLUG TO SURFACE.													
24/20 6 -																
PJ 7/																
556.G																
EL-28					<u> </u>											
THURBER2S TEL-28556.GPJ 7/24/20								7								
URBE			\overline{arphi} water level upon CC	OMPI	LETION		1	⊢ W	ATER LEVEL IN WELL/PIEZO	OMETE	R	LOGGE		MP KF		
₽												5. IL OF				THURBER



CA14399-JUL21 R1

1-21-0168

Prepared for

Terraprobe

First Page

CLIENT DETAILS		LABORATORY DETAIL	S
Client	Terraprobe	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	11 Indell Lane	Address	185 Concession St., Lakefield ON, K0L 2H0
	Brampton, ON		
	L6T 3Y3. Canada		
Contact	Mariam Al Gailani	Telephone	2165
Telephone	519-722-7134	Facsimile	705-652-6365
Facsimile	905-796-2250	Email	jill.campbell@sgs.com
Email	malgailani@terraprobe.ca	SGS Reference	CA14399-JUL21
Project	1-21-0168	Received	07/19/2021
Order Number		Approved	07/23/2021
Samples	Ground Water (1)	Report Number	CA14399-JUL21 R1
		Date Reported	07/23/2021

COMMENTS

MAC - Maximum Acceptable Concentration

AO/OG - Aesthetic Objective / Operational Guideline

NR - Not reportable under applicable Provincial drinking water regulations as per client.

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present:Yes Custody Seal Present:Yes

Chain of Custody Number:025673

Raise RL for NO2 due to sample matrix interference

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-6
Exceedance Summary	7
QC Summary	8-15
Legend	16
Annexes	17

CA14399-JUL21 R1

Client: Terraprobe

Project: 1-21-0168

Project Manager: Mariam Al Gailani

PACKAGE: General Chemistr	y (WATER)		Sample Number	7
			Sample Name	BH2
1 = PWQO / WATER / Table 2 - General -	July 1999 PIBS 3303E		Sample Matrix	Ground Water
			Sample Date	19/07/2021
Parameter	Units	RL	L1	Result
eneral Chemistry				
Alkalinity	mg/L as	2		489
	CaCO3			I
Bicarbonate	mg/L as	2		489
	CaCO3			<u> </u>
Carbonate	mg/L as	2		< 2
	CaCO3			<u> </u>
он	mg/L as	2		< 2
	CaCO3			
Colour	TCU	3		9
Conductivity	uS/cm	2	ļ]	4660
Turbidity	NTU	0.10		34.2
Ammonia+Ammonium (N)	as N mg/L	0.04		< 0.04
Phosphorus (total reactive)	mg/L	0.03		< 0.03
Total Organic Carbon	mg/L	1		2
letals and Inorganics				
Fluoride	mg/L	0.06		< 0.06
Bromide	mg/L	0.05		0.18
Nitrite (as N)	as N mg/L	0.003		< 0.03↑
Nitrate (as N)	as N mg/L	0.006		2.98
Sulphate	mg/L	0.04		38
Hardness	mg/L as	0.05		1090
Haluness	CaCO3	0.05		1000
Aluminum (0.2µm)	mg/L	0.001	0.015	0.009
Arsenic	μg/L	0.2	5	1.1
Arsenic	µy/L	0.2	5	

CA14399-JUL21 R1

Client: Terraprobe

Project: 1-21-0168

Project Manager: Mariam Al Gailani

				_	
PACKAGE: Metals and Inorganics (WATER)			Sample Number	7	
			Sample Name	BH2	
L1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 3303E			Sample Matrix	Ground Water	
			Sample Date	19/07/2021	21
Parameter	Units	RL	L1	Result	
Metals and Inorganics (continued)					
Boron	µg/L	2	200	17	
Barium	µg/L	0.02		569	
Beryllium	µg/L	0.007	11	0.070	
Cobalt	µg/L	0.004	0.9	0.925	
Calcium	mg/L	0.01		366	
Cadmium	µg/L	0.003	0.1	0.023	
Copper	µg/L	0.2	1	4.3	
Chromium	µg/L	0.08		4.35	
Iron	ug/L	7	300	1960	
Potassium	mg/L	0.009		4.51	
Magnesium	mg/L	0.001		42.2	
Manganese	µg/L	0.01		72.0	
Molybdenum	µg/L	0.04	40	1.42	
Nickel	µg/L	0.1	25	2.6	
Sodium	mg/L	0.01		581	
Phosphorus	mg/L	0.003	0.01	0.080	
Lead	µg/L	0.01	1	1.17	
Silicon	ug/L	20		11100	
Silver	μg/L	0.05	0.1	< 0.05	
Strontium	µg/L	0.02		982	
Thallium	μg/L	0.005	0.3	0.024	
Tin	µg/L	0.06		0.92	
Titanium	ug/L	0.05		113	
	Jg/L	0.00			

CA14399-JUL21 R1

Client: Terraprobe

Project: 1-21-0168

Project Manager: Mariam Al Gailani

Samplers: Syed Ali

PACKAGE: Metals and Inorganics (WATEF	2)		Sample	ə Number 7
	'			ple Name BH2
_1 = PWQO / WATER / Table 2 - General - July 1999 PIBS 3303	3E			ple Matrix Ground Water
			San	nple Date 19/07/2021
Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Antimony	µg/L	0.9	20	< 0.9
Selenium	µg/L	0.04	100	0.48
Uranium	µg/L	0.002	5	2.31
Vanadium	µg/L	0.01	6	4.25
Tungsten	µg/L	0.02	30	0.24
Zinc	µg/L	2	20	8
Zirconium	µg/L	2	4	< 2
Other (ORP)				
рН	No unit	5	8.5	7.52
Chloride	mg/L	0.04		1300
Mercury (dissolved)	mg/L	0.00001		< 0.00001

EXCEEDANCE SUMMARY

				PWQO / WATER / -
				- Table 2 - General
				- July 1999 PIBS
				3303E
Parameter	Method	Units	Result	L1
2				
Cobalt	SM 3030/EPA 200.8	μg/L	0.925	0.9
[SM 3030/EPA 200.8 SM 3030/EPA 200.8	μg/L μg/L	0.925	0.9
Cobalt				
Cobalt Copper	SM 3030/EPA 200.8	μg/L	4.3	1

QCR_SubCategory

Method: SM 2130 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate LCS		S/Spike Blank		м	atrix Spike / Ref	:	
F	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Turbidity	EWL0325-JUL21	NTU	0.10	< 0.10	3	10	99	90	110	NA		

Alkalinity

Method: SM 2320 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	F.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Alkalinity	EWL0309-JUL21	mg/L as CaCO3	2	< 2	0	20	102	80	120	NA		

Ammonia by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		N	latrix Spike / Re	F.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Ammonia+Ammonium (N)	SKA0220-JUL21	mg/L	0.04	<0.04	ND	10	99	90	110	100	75	125

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method			LC	S/Spike Blank		М	atrix Spike / Ret	
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery	Recove	ry Limits %)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Bromide	DIO0317-JUL21	mg/L	0.05	<0.05	13	20	96	90	110	95	75	125
Nitrate (as N)	DIO0317-JUL21	mg/L	0.006	<0.006	0	20	102	90	110	100	75	125
Nitrite (as N)	DIO0324-JUL21	mg/L	0.003	<0.003	ND	20	95	90	110	97	75	125
Sulphate	DIO0324-JUL21	mg/L	0.04	<0.04	0	20	103	90	110	89	75	125
Chloride	DIO0350-JUL21	mg/L	0.04	<0.04	1	20	103	90	110	101	75	125

Carbon by SFA

Method: SM 5310 | Internal ref.: ME-CA-IENVISFA-LAK-AN-009

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank		м	atrix Spike / Re	r.
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Total Organic Carbon	SKA0210-JUL21	mg/L	1	<1	1	10	98	90	110	96	75	125

Carbonate/Bicarbonate

Method: SM 2320 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery	Recover	ry Limits 6)
					(%)	Recovery (%)	Low	High	(%)	Low	High	
Carbonate	EWL0309-JUL21	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		
Bicarbonate	EWL0309-JUL21	mg/L as CaCO3	2	< 2	0	10	NA	90	110	NA		
ОН	EWL0309-JUL21	mg/L as CaCO3	2	< 2	ND	10	NA	90	110	NA		

Colour

Method: SM 2120 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	CS/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Colour	EWL0389-JUL21	TCU	3	< 3	ND	10	100	80	120	NA		

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover (%	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0309-JUL21	uS/cm	2	< 2	0	20	99	90	110	NA		

Flouride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref	i.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0329-JUL21	mg/L	0.06	<0.06	ND	10	100	90	110	101	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (dissolved)	EHG0018-JUL21	mg/L	0.00001	< 0.00001	ND	20	NV	80	120	98	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC:	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	-	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0125-JUL21	ug/L	0.05	<0.00005	ND	20	103	90	110	94	70	130
Aluminum (0.2µm)	EMS0125-JUL21	mg/L	0.001	<1	ND	20	108	90	110	110	70	130
Arsenic	EMS0125-JUL21	ug/L	0.2	<0.0002	ND	20	105	90	110	104	70	130
Barium	EMS0125-JUL21	ug/L	0.02	<0.00002	ND	20	100	90	110	109	70	130
Beryllium	EMS0125-JUL21	ug/L	0.007	<0.00007	ND	20	90	90	110	99	70	130
Boron	EMS0125-JUL21	ug/L	2	<0.002	ND	20	99	90	110	106	70	130
Calcium	EMS0125-JUL21	mg/L	0.01	<0.01	ND	20	102	90	110	100	70	130
Cadmium	EMS0125-JUL21	ug/L	0.003	<0.000003	ND	20	102	90	110	105	70	130
Cobalt	EMS0125-JUL21	ug/L	0.004	<0.000004	ND	20	105	90	110	99	70	130
Chromium	EMS0125-JUL21	ug/L	0.08	<0.0008	ND	20	106	90	110	107	70	130
Copper	EMS0125-JUL21	ug/L	0.2	<0.0002	ND	20	104	90	110	99	70	130
Iron	EMS0125-JUL21	ug/L	7	<0.007	ND	20	99	90	110	100	70	130
Potassium	EMS0125-JUL21	mg/L	0.009	<0.009	ND	20	108	90	110	92	70	130
Magnesium	EMS0125-JUL21	mg/L	0.001	<0.001	ND	20	103	90	110	97	70	130
Manganese	EMS0125-JUL21	ug/L	0.01	<0.00001	ND	20	104	90	110	101	70	130
Molybdenum	EMS0125-JUL21	ug/L	0.04	<0.00004	ND	20	102	90	110	100	70	130
Sodium	EMS0125-JUL21	mg/L	0.01	<0.01	ND	20	101	90	110	97	70	130
Nickel	EMS0125-JUL21	ug/L	0.1	<0.0001	ND	20	105	90	110	92	70	130
Lead	EMS0125-JUL21	ug/L	0.01	<0.00001	ND	20	108	90	110	118	70	130
Phosphorus	EMS0125-JUL21	mg/L	0.003	<0.003	ND	20	104	90	110	NV	70	130

Metals in aqueous samples - ICP-MS (continued)

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.				
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover		Spike Recovery		ry Limits %)		
						(70)	(%)	Low	High	(%)	Low	High		
Antimony	EMS0125-JUL21	ug/L	0.9	<0.0009	ND	20	98	90	110	99	70	130		
Selenium	EMS0125-JUL21	ug/L	0.04	<0.00004	ND	20	99	90	110	100	70	130		
Silicon	EMS0125-JUL21	ug/L	20	<0.02	ND	20	100	90	110	NV	70	130		
Tin	EMS0125-JUL21	ug/L	0.06	<0.00006	ND	20	99	90	110	NV	70	130		
Strontium	EMS0125-JUL21	ug/L	0.02	<0.00002	ND	20	103	90	110	99	70	130		
Titanium	EMS0125-JUL21	ug/L	0.05	<0.00005	ND	20	108	90	110	NV	70	130		
Thallium	EMS0125-JUL21	ug/L	0.005	< 0.005	ND	20	99	90	110	110	70	130		
Uranium	EMS0125-JUL21	ug/L	0.002	<0.000002	ND	20	98	90	110	110	70	130		
Vanadium	EMS0125-JUL21	ug/L	0.01	<0.00001	ND	20	105	90	110	103	70	130		
Tungsten	EMS0125-JUL21	ug/L	0.02	<0.00002	ND	20	98	90	110	NV	70	130		
Zinc	EMS0125-JUL21	ug/L	2	<0.002	ND	20	104	90 110		106	70	130		
Zirconium	EMS0125-JUL21	ug/L	2	<0.002	ND	20	96	90	110	NV	70	130		

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	:	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0309-JUL21	No unit	5	NA	1		100			NA		

Reactive Phosphorus by SFA

Method: SM 4500-P F | Internal ref.: ME-CA-IENVISFA-LAK-AN-004

Parameter	QC batch	Units	RL	Method Blank	Duj	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference				RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Phosphorus (total reactive)	SKA0204-JUL21	mg/L	0.03	<0.03	ND	10	100	90	110	77	75	125

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

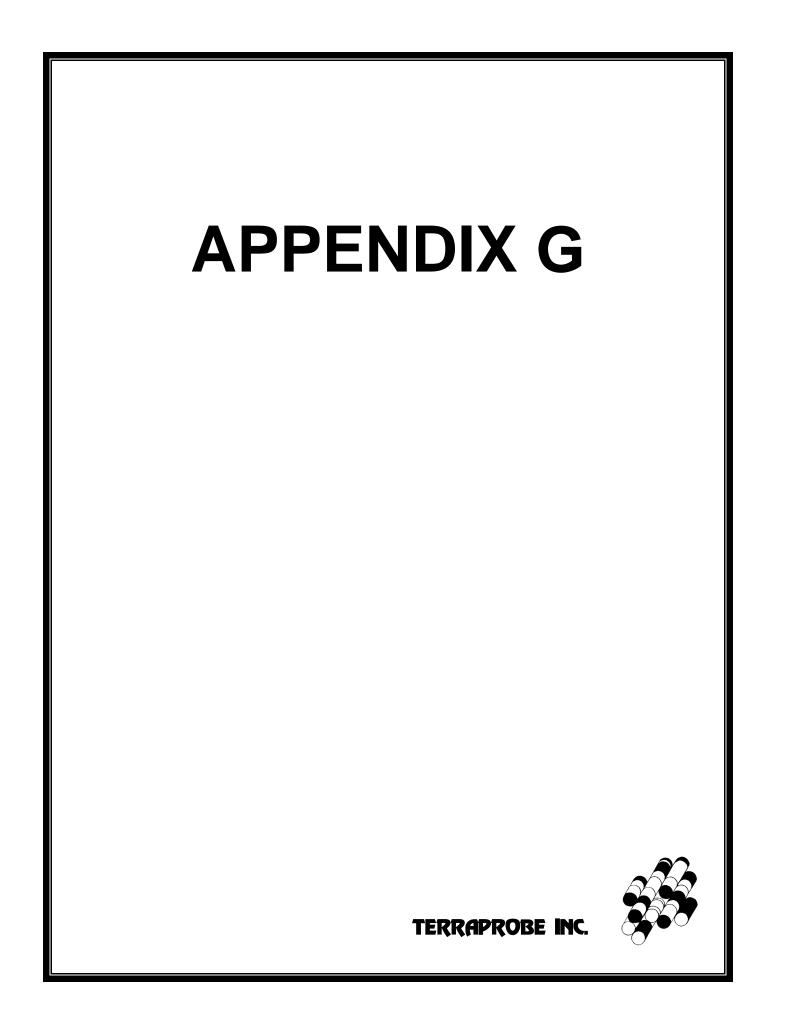
FOOTNOTES

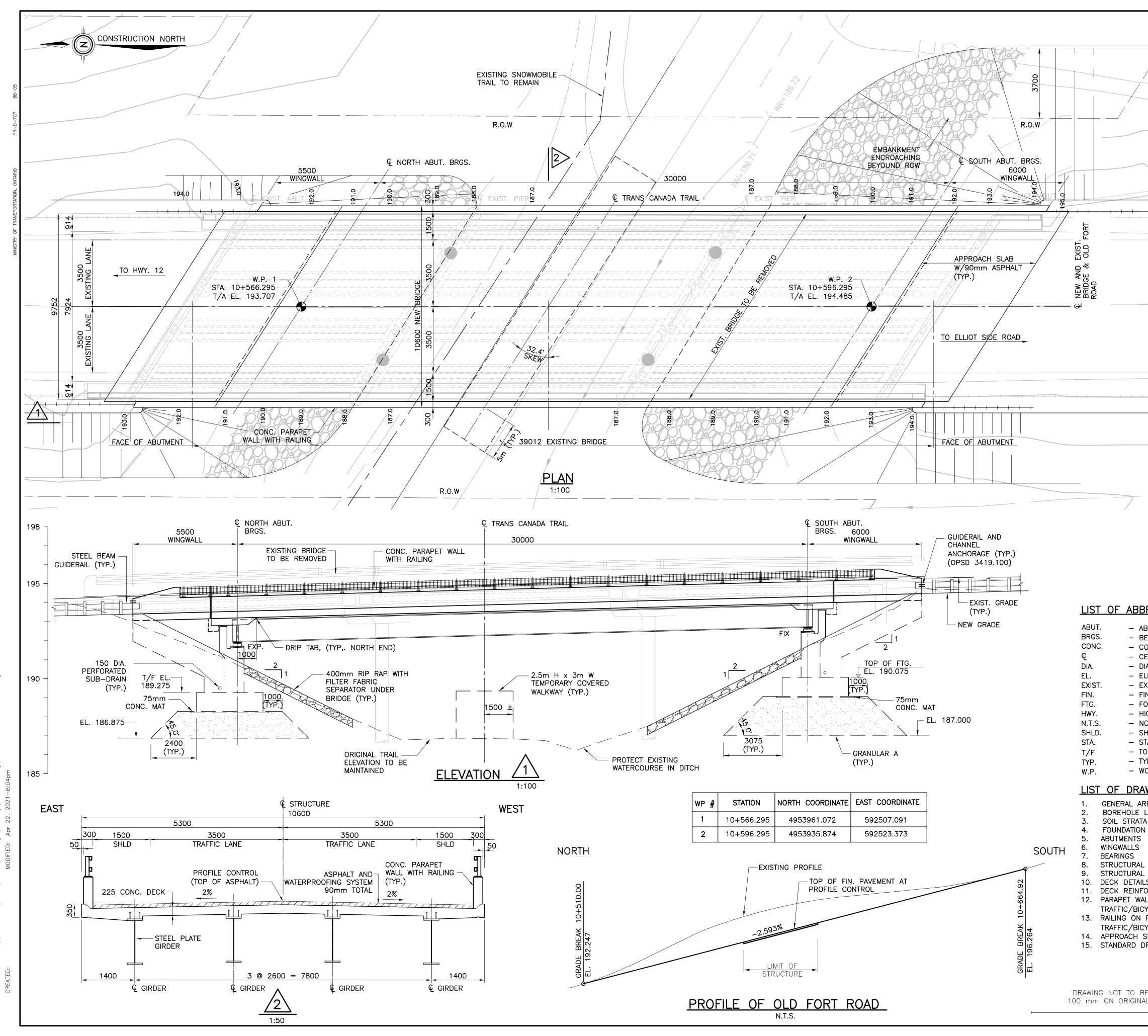
NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.


SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.


This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

No:025673		LAB LINS #. 〔9-11] 399 - ふいとい		N For Co Minimum		TAT) servicements TAT's are quoted in business days (exclude statutory holidays & weekends). Samilas resolved after from or on weekender Tat't havine or businese day		AD REFREDENTIAL FROM TO DODINGOOD AND A DODINGOOD AND A DODING (POTABLE) WATER SUMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED		SPLPITCLP	Specify Specify tests	Ontetals Ower		Documentary Control Co																() Pink Copy - Client	
		LAB LI		010 1834 010	Lead .	loted in business days (s 4 Days	SAMPLES FOR HUMA		Other (please specify)		[1]	pəpu	i refos Exteri	wer Use: afer Chai	eq2													-	2) (mm/dd/yy)	, mulddyn
				P.O. #: Cito Location/ID:	TIBNAROIND TIME (TAT) REGUIRED	TAT's are qu	ISH TAT (Additional Charges May Apply):	(POTABLE) WATER	IESTED				other	or specify	enholnoons D M Q	Orga	×												-	Date: 101 07 10 1 3	2, 19, 20
invironment		Type: Ce			THRMAROHNE			*NOTE: DRINKING	ANALYSIS REOLIESTED					-	ret only BTEX CS CS CS CS CS CS CS CS CS CS CS CS CS														-	Date:	Cotor C
- Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/envi - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361	Lab use only	nt: Yes No		68	202	\$)	s May Apply):		ANAI	PCI		Aroclor		Total	-F4 + E SBS VOCS	E1															
Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment t, London, ON, NGE 2S8 Phone: 519-672-4500 Toll Free: 877-948-8060 Fax: 519-672-0361	Laboratory Information Section - Lab use only	Cooling Agent Present: Yes No Temperature Upon Receipt (°C)		1- 71-0168	and south the second	Regular TAT (5-7days)	RUSH TAT (Additional Charges May Apply) DI EASE COMEIDM DIREL EEASIDII ITY MIT	late:		I SVOC				אַ כּריכס,כע אַ כּריכס,כע ע	B suig sistem B suig sistem P Metal C.B.98.88.84 Clno 2H/	b∖ ^{2₽'}														a gentier	
one: 705-652-2000 one: 519-672-4500	gratory Inform	hoc		Quotation #:	Project #.	M ^{Reg}	RUSH TAT (A	Specify Due Date:		M		(1105-HA	s,53.(2)	Inorg WH)8),Hq	etals Filte etals & ^{Crvi, Cu,Hg}	M Incl (CI,	2												-	0	
id, ON KOL 2H0 Pho n, ON, N6E 2S8 Ph		ture): ant: Yes No	TION	ť.			L6T 343	PEC /A		Sewer Ru-Law	Sanitary	Municipality:	_		# OF OTTLES		NS SN				-									Signature:	ature:
ncession St., Lakefie ortium Court, Londo		Received By (signature): Custody Seal Present: Yes Custody Seal Intact: Yes	INVOICE INFORMATION	(same as Report Information)	19	Il Juneter I.M.		Rocer @ Reverence 14		ions:	PWQO	MISA Unter: MISA ODWS Not Reportable *See note			TIME # OF SAMPLED BOTTLES		20													Signa	Sign
- Lakefield: 185 Cor - London: 657 Cons		3	INI	s/-		Contact: Lo	BEANPTON		100	Other Regulations:	Reg 347/558				DATE SAMPLED		12/1.0/61						5							~	
Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON K0L 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment - London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-948-9060 Fax: 519-672-0361	rear	02/12 20-1 (mm/dd/yy)	AA	TERRAPROBE INC.	ANGEL 1	0n.	196-2	HLANI @ TELLARCISE (A Fride		O.Reg 406/19	Res/Park Soil Texture:	Agri/Other	L W		SAMPLE IDENTIFICATION					The second se									Observations/Comments/Special Instructions	SYED ALI	MEN CLIER A.
SGS	~	Received By: Received Date:	REPO	5		2	:et	Hax: MALGAILANI @	Email:	O.Rea 153/04		Table 3	RECOR		SAMPL	1.0	1 BH3	2	3	4	5	9	7	8	6	10	11	12	bservations/Commer	Sampled By (NAME):	Relinauished bv (NAME):

neanhai uodn a

NG NAME: \\MAR-FS01\active\20328\5. Bridge\Drafting\Contract Dwg\20328_0Id Fort-GA

R.O.W	CONT	No	
	OLD	FORT ROAD BRIDGE	SHEET
		RAL ARRANGEMENT	
	L	LEA Consulting Ltd. Consulting Engineers and Planners www.LEA.ca	
	METR		OUNTY OF
DIME A UNL	NSIONS ARE ND/OR MILL ESS OTHERW	IN METRES SIM	COE
	GENERAL N CLASS OF CONCRETE CLEAR COVER TO RE	E	
	DECK TOP BOTTOM	100±25 70±20 40±10 NOTED OTHERWISE)70±20	
	SPECIFIED.	SHALL BE GRADE 400W UNLESS C	
	SHALL BE CLASS B.		
	STAINLESS REINFORC	REFIX "S" DENOTE STAINLESS STEE ING STEEL SHALL BE TYPE 316LN IIMUM YIELD STRENGTH OF 500 MF	OR DUPLEX
	BEND DIAMETERS. WI HOOK DIMENSIONS.	HAVE STANDARD HOOK DIMENSIONS HILE STIRRUPS AND TIES SHALL HA ALL HOOKS SHALL BE IN ACCORDA RD DRAWING SS12—1, UNLESS IND	AVE MINIMUM NCE WITH THE
		DRCED POLYMER REINFORCING BARS DR GRADE III AS SPECIFIED IN THE	
	THE NOMINAL DIAME	TER, TENSILE MODULUS OF ELASTIC M TENSILE STRENGTH SHALL BE AS JMENTS.	
		IE PREFIX GI DENOTE GRADE I GLA	SS FIBRE
REVIATIONS:	BAR MARKS WITH TH REINFORCED POLYME	IE PREFIX GII DENOTE GRADE II GL R BARS.	ASS FIBRE
BUTMENT EARINGS	REINFORCED POLYME	IE PREFIX GIII DENOTE GRADE III G R BARS.	LASS FIBRE
ONCRETE ENTRELINE IAMETER LEVATION XISTING INISHED	BY DEDUCTING T OF BEARING ELE ARE DIFFERENT DATA, THE CONT	R SHALL ESTABLISH THE BEARING HE ACTUAL BEARING THICKNESSES VATIONS. IF THE ACTUAL BEARING FROM THOSE GIVEN WITH THE BEA RACTOR SHALL ADJUST THE REINFO	FROM THE TOP THICKNESSES RING DESIGN
OOTING IGHWAY OT TO SCALE	TO SUIT. 2. BACKFILL BEHINE) ABUTMENTS SHALL NOT BE PLAC IT HAS REACHED A STRENGTH OF	ED UNTIL CONC.
HOULDER TATION OP OF FOOTING YPICAL ORKING POINT			
WINGS		STANDARD DRAWINGS:	
RRANGEMENT LOCATIONS AND SOIL STRATA A		GUIDE RAIL SYSTEM, STEEL BEAM STRUCTURE CONNECTION, TUBE RAINSTALLATION	ILING
I LAYOUT AND DETAILS	OPSD-3101.150	WALLS, ABUTMENT, BACKFILL, MINI GRANULAR REQUIREMENT	МОМ
STEEL - I	0PSD-3102.100	WALLS, ABUTMENT, BACKFILL DRAII	N
. STEEL - II _S ORCING	OPSD-3370.100	DECK, WATERPROOFING HOT APPLI ASPHALT MEMBRANE WITH PROTEC BOARD	
LL FOR COMBINATION YCLE RAIL, TL-4 PARAPET FOR COMBINATION YCLE RAIL, TL-4 SLAB		DECK, WATERPROOFING HOT APPLIE ASPHALT MEMBRANE AT ACTIVE CR GREATER THAN 2mm WIDE AND CONSTRUCTION JOINTS	
DRAWING			
E SC D AL DR NG	DR		
DESI		DITE STRUCT SCHEME	