A REPORT TO
HIGH LEVEL CONSTRUCTION LTD.

HYDROGEOLOGICAL STUDY

PROPOSED RESIDENTIAL DEVELOPMENT
3879 TOWN LINE

CITY OF ORILLIA

REFERENCE NO. 1606-W168

NOVEMBER 2017
(REVISION OF REPORT DATED APRIL 2017)

DISTRIBUTION

2 Copies - High Level Construction Ltd.
1 Copy - C.C. Tatham & Associates Ltd.
1 Copy - Soil Engineers Ltd. (Barrie)
LIMITATIONS OF LIABILITY

This report was prepared by Soil Engineers Ltd. for the account of High Level Construction Ltd., and for review by its designated agents, financial institutions and government agencies, and can be used for development approval purposes by the City of Orillia and their peer reviewer who may rely on the results of the report. The material in it reflects the judgement of Angella Graham M.Sc., Narjes Aljani, M.Sc., P.Geo., and Gavin O’Brien, M.Sc., P.Geo. Any use which a Third Party makes of this report and/or any reliance on decisions to be made based on the report is the responsibility of such Third Parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

One must understand that the mandate of Soil Engineers Ltd. is to obtain readily available current and past information pertinent to the subject site for a Hydrogeological Study only. No other warranty or representation, expressed or implied, as to the accuracy of the information is included or intended by this assessment. Site conditions are not static and this report documents site conditions observed at the time of the site reconnaissance.
TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY .. 1

2.0 INTRODUCTION .. 4
 2.1 Project Description .. 4
 2.2 Project Objectives .. 4
 2.3 Scope of Work ... 5

3.0 METHODOLOGY ... 7
 3.1 Borehole Advancement and Monitoring Well Installation 7
 3.2 Groundwater Monitoring ... 8
 3.3 Mapping of Ontario Water Well Records .. 8
 3.4 Monitoring Well Development and Single Well Response Tests 8
 3.5 Estimating Hydraulic Conductivity based on Hazen Equation Method.. 9
 3.6 Review Summary of Previous Report.. 9

4.0 REGIONAL AND LOCAL SETTING ... 11
 4.1 Regional Geology .. 11
 4.2 Physical Topography ... 11
 4.3 Watershed Setting .. 12
 4.4 Local Surface Water and Natural Features .. 12

5.0 SOIL LITHOLOGY .. 13
 5.1 Topsoil ... 13
 5.2 Sand .. 13
 5.3 Silty Sand Till .. 13
 5.4 Sandy Silt Till .. 14

6.0 GROUNDWATER STUDY .. 15
 6.1 Review of Previous and Concurrent Reports.. 15
 6.2 Review of Ontario Water Well Records .. 15
 6.3 Groundwater Monitoring .. 16
 6.4 Single Well Response Test Analysis ... 17
 6.5 Assessment of Hydraulic Conductivity based on Hazen Equation........ 18
 6.6 Shallow Groundwater Flow Pattern... 19
TABLE OF CONTENTS (cont'd)

7.0 GROUNDWATER CONTROL DURING CONSTRUCTION 20
 7.1 Groundwater Construction Dewatering Rates 20
 7.2 Groundwater Control Methodology .. 23
 7.3 Mitigation of Potential Impacts Associated with Dewatering 24
 7.4 Permanent Drainage for Underground Structures 24
 7.5 Ground Settlement .. 26

8.0 POTENTIAL WATER SUPPLY EVALUATION 27

9.0 NUTRIENT LOADING IMPACT .. 28
 9.1 Reasonable Use Criteria ... 28
 9.2 Nitrate Loading Mass Balance ... 28

10.0 CONCLUSIONS ... 31

11.0 REFERENCES .. 35
TABLES

Table 3-1 - Monitoring Well Installation Details .. 8
Table 6-1 - Water Level Measurements .. 16
Table 6-2 - Summary of SWRT Results .. 17

ENCLOSURES

Borehole/Monitoring Well Logs... Figures 1 to 4
Grain Size Distribution Graphs... Figures 5 to 6
Site Location Plan ... Drawing No. 1
Borehole and Monitoring Well Location Plan .. Drawing No. 2
MOECC Well Location Plan ... Drawing No. 3
Quaternary and Surface Geology Map .. Drawing No. 4
Topographic Map .. Drawing No. 5
Watershed Map .. Drawing No. 6
Natural Features and Protection Area Plan ... Drawing No. 7
Cross-Section Key Plan ... Drawing No. 8-1
Geological Cross-Section (A-A’) .. Drawing No. 8-2
Shallow Groundwater Flow Pattern Plan .. Drawing No. 9

APPENDICES

MOECC Water Well Records Summary .. Appendix ‘A’
Results of Single Well Response Tests .. Appendix ‘B’
Nitrate Impact Assessment ... Appendix ‘C’
Water Quality Certificates of Analysis .. Appendix ‘D’
1.0 EXECUTIVE SUMMARY

Soil Engineers Ltd. (SEL) conducted a Hydrogeological Study for a proposed development site located at 3879 Town Line, in the City of Orillia. Surrounding land use includes Town Line Road and agricultural properties to the west, residential properties to the north, residential properties and wooded areas which are situated to the east and south of the subject site.

The subject site is located within the physiographic region of Southern Ontario known as the Simcoe Lowlands, where the native surface geological soil unit consists of till deposits. The site is located within the Nottawasaga River Watershed and the Severn Sound subwatershed.

A review of the local topography shows that there is a gentle decline in grade to the northeast and the northwest, with an elevation relief of approximately 11 m.

Review of mapping records show that 3879 Town Line is wooded, and wooded areas are situated adjacent to the subject site. A seasonal tributary of the North River originates from the northwest corner of the site.

This study has disclosed that beneath a layer of topsoil, native soils underlying the subject site consist of sand, silty sand till, and sandy silt till.

The findings of this study confirm that local groundwater levels range from El. 258.99 to 268.23 masl and shallow groundwater flows in northeasterly and southwesterly directions from a groundwater mound located within the southern portion of the site.

The Single Well Response Tests (SWRT’s) yielded estimated hydraulic conductivity (K) values ranging from 3.0×10^{-7} to 8.9×10^{-8} for the silty sand till and sandy silt till
at the depths of the well screens. These results suggest that low groundwater seepage rates can be anticipated into open excavations below the water table.

The Hazen Equation calculated results indicates a K value of 6.76×10^{-6} m/sec for the sandy silt till and 1.60×10^{-7} m/sec for the sandy silt till. The K estimate determined from the Hazen equation suggests low to moderate hydraulic conductivity and associated seepage rates for groundwater bearing layers beneath the subject site.

Preliminary dewatering flow estimates for the site suggest that the dewatering flow rate for the site could reach a maximum of 12,691 L/day; by applying a safety factor of three, the dewatering flow rate could reach a maximum of 38,072 L/day for housing construction. These estimates are based on conventionally side sloped excavations.

The estimated zone of influence for dewatering could reach a maximum of 27 m from the conceptual dewatering alignment for proposed construction. Neighbouring residential properties and a seasonal tributary of the North River that originates on site are within the zone of influence of conceptual dewatering for the proposed development. The local groundwater flow pattern and surface flow in the tributary may be temporarily impacted during construction.

The anticipated long-term foundation drainage from both an under-slab basement floor drainage network and perimeter subdrains for side sloped excavations together give drainage flow estimates ranging from 0.13 L/day to 5,780 L/day respectively, by applying a safety factor of five, it could reach a maximum of 28,900 L/day.

MOECC water well records indicate that there are approximately 186 domestic supply wells drilled within a 500 m radius of the site. Well yields vary between 3,600 and 927,000 liters per day based on review of available well records. Most of the domestic
wells are screened in the deeper aquifer at depths between 25 m and 62 m below grade, with only a few wells screened in the shallow aquifer.

The nitrate impact loading assessment modelled concentrations for nitrate at the hydraulically downgradient property boundary for 19 proposed lots is 13.07 mg/L based on use of conventional sewage system loading and is 8.07 mg/L for tertiary sewage loading. The maximum number of lots that can be accommodated using tertiary septic systems based on loading for sewage at 20 mg/L nitrate is 30. The predicted nitrate result based on use of a conventional sewage system loading exceeds the Ontario Drinking Water Standard of 10 mg/L. As such, use of tertiary sewage treatment is recommended for each proposed lot.

Proposed Low Impact Development measures being considered to maintain the pre-development water balance for the site after development should consider opportunities to re-infiltrate storm water into the shallow sands and till soils that are present on site. Some runoff can be redirected to the proposed storm water management pond located at the northeast corner of the site. Roof generated runoff should be considered for direction to any proposed low impact development infrastructure, such as soak away pits or a communal infiltration gallery.
2.0 **INTRODUCTION**

2.1 **Project Description**

In accordance with authorization from Mr. David Meeks, President of High Level Construction Ltd., Soil Engineers Ltd. (SEL) has conducted a Hydrogeological Assessment at 3879 Town Line, City of Orillia. The location of the site is shown on Drawing No. 1.

The subject site is located in a wooded area where the surrounding neighbouring areas consist of Town Line, Old Coldwater Road and Highway 12. Agricultural properties lie to the west, and residential properties are situated to the north, and residential properties and wooded areas are situated both east and south of the site. A residential development consisting of 19 lots has been proposed for the site.

This hydrogeological assessment summarizes the findings of the field study and associated groundwater monitoring and analysis program, and provides a description and characterization of the interpreted hydro-geostratigraphy for the site, with a preliminary assessment of construction-related and permanent dewatering needs prior to the detailed design. Further, the study will provide recommendations for implementation of any low impact development (LID) infrastructure to enhance infiltration and to maintain the pre-development water balance.

2.2 **Project Objectives**

The major objectives of this Hydrogeological Study Report are as follows:

1. Establish the hydrogeological setting of the site and the surrounding area in support of a proposed residential subdivision development;
2. Identify zones of higher groundwater yield as potential sources of ongoing shallow groundwater seepage;
3. Characterize the hydraulic conductivity (K) for groundwater-bearing soil strata;
4. Estimate the anticipated dewatering flows that may be required to lower the water table to facilitate construction, or for any permanent, long-term dewatering needs to facilitate foundation drainage after housing construction;
5. Evaluate potential impacts to groundwater receptors within the anticipated zone of influence; and to provide preliminary estimation of dewatering flow rates to lower the water table to facilitate excavation and construction and;
6. Evaluate potential impacts to groundwater receptors within the anticipated zone of influence;
7. Carry out a nutrient impact assessment to evaluate the attenuation capacity of the site to accommodate in-ground septic systems based on proposed lot level septic sewage systems.

2.3 **Scope of Work**

The scope of work for the Hydrogeological Study is summarized below:

1. Installation of four (4) monitoring wells within the site’s development footprint;
2. Monitoring well development and groundwater level measurements at four (4) monitoring wells;
3. Performance of Single Well Response Tests (SWRTs) at the monitoring wells to estimate the hydraulic conductivity (K) for groundwater-bearing subsoil at the depths of the well screens;
4. Describing the geological and hydrogeological setting for the site and local area;
5. Review of available engineering development plans and profiles; and completion of preliminary calculations to estimate the anticipated dewatering flows necessary to lower the groundwater level for construction;

6. Review of MOECC water well records to develop recommendations on the potential to develop groundwater to supply individual wells to service proposed new housing.

7. Conducting a nutrient assessment using baseline levels of nitrate in shallow groundwater to assess the attenuation capacity of the site to accommodate lot level septic systems for the sewage servicing at the proposed new subdivision.
3.0 METHODOLOGY

3.1 Borehole Advancement and Monitoring Well Installation

The field work for the borehole drilling and monitoring well construction was performed on July 27, 2016. It consisted of four (4) drilled boreholes (BH) and the installation of a monitoring well (MW); one in each of the boreholes, at the locations shown on Drawing No. 2.

The drilling and monitoring well construction were completed by a licensed contractor, DBW Drilling Limited, under the full-time supervision of a geotechnical technician from SEL, who also logged the soil strata encountered during borehole advancement and collected representative soil samples. The boreholes were drilled using continuous-flight power augers. The logs for the boreholes showing monitoring well construction details are presented on Figures 1 to 4, inclusive.

The monitoring wells were all constructed using 50 mm diameter PVC riser pipes and screens, and installed in the boreholes in accordance with Ontario Regulation (O. Reg.) 903. All monitoring wells were provided with monument type steel protective casings. The details for monitoring well construction are provided on the Borehole Logs.

The UTM coordinates and ground surface elevation at the borehole/monitoring well locations, together with the well details, are provided on Table 3-1.
3.2 **Groundwater Monitoring**

The groundwater levels in the monitoring wells were measured manually on August 5, 19 and 26, 2016.

3.3 **Mapping of Ontario Water Well Records**

SEL received the Ministry of Environment and Climate and Change (MOECC) Water Well Records (WWRs) for registered wells located on the subject site and within 500 m of the site boundaries (study area). The records indicate that one hundred ninety-six (196) wells are located within the study area. The well locations are shown on Drawing No. 3, and the WWRs reviewed for this study are listed in Appendix ‘A’.

3.4 **Monitoring Well Development and Single Well Response Tests**

The monitoring wells underwent development in preparation for single well response test (SWRT) to estimate the hydraulic conductivity (K) for soil strata at the depths of the well screens. Well development involved the purging and removal of several casing volumes of groundwater from each well to remove remnants of clay, silt and other
debris introduced into the wells during construction, and to induce the flow of fresh formation groundwater into the well screens, thereby improving the transmissivity of the soil formation at the well screen depths.

The K values derived from the SWRT’s provide an indication of the groundwater yield capacity for the water-bearing strata and can be used to estimate the flow of groundwater through granular water-bearing soil strata.

The SWRT involves the placement of a slug of known volume into the well, below the water table, to displace the groundwater level upward. The rate at which the water level recovers to static conditions (falling head) is tracked using a data logger/pressure transducer and/or manually using a water level tape. The rate at which the water table recovers to static conditions is used to estimate the K value for the water-bearing formation at the well screen depth. BH/MWs 1, 2, 3 and 4 underwent SWRT’s on August 19, 2016. The test results are provided in Appendix ‘B’, with a summary of the results provided in Table 6-2.

3.5 **Estimating Hydraulic Conductivity based on Hazen Equation Method**

The Hazen equation estimation method was also used to estimate the hydraulic conductivity for saturated subsoils at the anticipated water level depths beneath the subject site. The method provides alternative hydraulic conductivity (K) estimates which are derived from the grain size diameter, whereby 10% by weight of the soil particles are finer and 90% are coarser (Freeze and Cherry, 1979).
3.6 **Review Summary of Previous Report**

The following report was reviewed in preparation of this hydrogeological study:

4.0 REGIONAL AND LOCAL SETTING

4.1 Regional Geology

The subject site lies within the physiographic region of Southern Ontario known as the Simcoe Lowlands. The area was flooded by the former glacial Lake Algonquin where the former lake is bordered by shore cliffs, beaches, and bouldery terraces. As such, the low area is floored by sand, silt, and clay (Chapman and Putnam, 1984). It covers an area of approximately 2850 square kilometers and lies at an elevation ranging from 177 to 259 masl. Remnant, physiographic landforms, including sand plains and beaches can also be found at the subject site.

Based on review of the surface geological map of Ontario, the subject site is located on till deposits, described as undifferentiated and consisting predominantly of sandy silt to silt matrix, commonly rich in clasts and often high in total matrix carbonate content. Drawing No. 4, reproduced from Ontario Geological Survey (OGS) mapping, illustrates the Quaternary surface soil geology for the area.

The bedrock elevation is at approximately 263-266 masl (Bedrock Topography of the Orr Lake Area, Southern Ontario, 1974), and consists of Middle Ordovician limestone, dolostone, shale, arkose and sandstone of the Ottawa Group, Simcoe Group and the Shadow Lake Formation (Ontario Ministry of Northern Department and Mines, 1991).

4.2 Physical Topography

A review of the topography shows that the subject site exhibits an undulating topography with a gradual decline in relief towards the northeast and north. Runoff from the site is expected to drain in north-eastern and northern directions. Based on the topographic map for the area and from review of the ground surface elevations at
borehole and monitoring well locations, the elevation relief across the subject site is approximately 11 m. Drawing No. 5 shows the mapped topographic contours for the site.

4.3 **Watershed Setting**

The subject site is located within the Nottawasaga River Watershed and Severn Sound subwatershed, which are mapped as shown on Drawing No. 6. The Nottawasaga River watershed occupies an area of approximately 3,700 square kilometers, with the associated conservation authority having jurisdiction in 18 municipalities. This watershed is the source for watercourses that flow into Georgian Bay at Wasaga Beach, Collingwood and Severn Sound. The Severn Sound subwatershed consists of five main watercourses - Wye River, Hogg Creek, Sturgeon River, Coldwater River and North River - that discharge directly into Severn Sound between Midland and Coldwater (Nottawasaga Valley Conservation Authority, 2007).

4.4 **Local Surface Water and Natural Features**

The subject site is located in a densely-wooded area with related vegetation present on the ground surface. A seasonal tributary of the North River, originates northwest of the subject site. The locations of the site and the noted natural features are shown on Drawing No. 7.
5.0 **SOIL LITHOLOGY**

This study has disclosed that beneath a layer of topsoil, the native soils underlying the subject site consist of sand, silty sand till and sandy silt till. A Key Plan and the interpreted geological cross-section along a northeast to southwest transect is presented on Drawing No. 8.

5.1 **Topsoil** (All BH/MWs)

Topsoil, 20 to 25 cm thick, was observed at the ground surface at all BH/MW locations. It is dark in colour and exhibits appreciable amounts of roots and humus.

5.2 **Sand** (BH/MWs 1, 3 and 4)

A sand unit, 0.5 to 1.1 m thick was encountered immediately beneath the topsoil at BH/MW 1, 3 and 4. It is brown in colour, is fine to medium grained, has a loose texture and is weathered. The water content for the unit ranges from 4% to 12%, indicating damp to moist conditions.

5.3 **Silty Sand Till** (All BH/MWs)

A layer of silty sand till, 2.2 to 2.7 m thick was found at all the BH/MW locations. It is brown in colour, has some clay, gravel, occasional sand and silt seams and layers, cobbles and boulders with occasional sand pockets. The moisture content for the unit ranges from 8% to 30%, indicating moist to saturated conditions. The estimated permeability for the sand seam within the till layer at a depth of 3.2 mbgs is about 10^{-3} cm/sec. A grain size analysis was performed on one (1) sample, and the gradation is plotted on Figure 4.
5.4 **Sandy Silt Till** (All BH/MWs)

Sandy silt till was encountered at all the BH/MWs extending to the maximum investigated depth of 7.8 m. It is brown to grey in colour, very dense with a trace of clay, gravel and has occasional cobbles and boulders. The thickness of the layer ranges from 2.6 to 4.9 m, with moisture content ranging from 5% to 14%, indicating damp to moist conditions.
6.0 **GROUNDWATER STUDY**

6.1 **Review of Previous and Concurrent Reports**

A review of the findings of the previous soil investigation report (SEL Reference No. 1606-S168) indicates that beneath the layer of topsoil, the site is underlain by sand, silty sand till and sandy silt till extending to the maximum investigated depth of 7.8 mbgs.

Based on this report, groundwater seepage was encountered in all the boreholes where the water levels were measured within the open boreholes at depths of 1.9 to 3.1 mbgs, upon completion of the drilling.

6.2 **Review of Ontario Water Well Records**

The Ministry of Environment and Climate Change (MOECC) water well records (WWRs) for the subject site and for the properties within a 500 m radius of the boundaries of the subject site (study area) were reviewed.

The records indicate that one hundred ninety-six (196) wells are located within the study area. The locations of these wells, based on the UTM coordinates provided by the well records, are shown on Drawing No 3. A detailed summary of the MOECC WWRs reviewed is provided in Appendix ‘A’.

A review of the final status of the wells within the study area reveals that one hundred ninety-two (192) wells are registered as water supply wells, and four (4) wells are registered as abandoned wells.
A review of the first status of the wells shows that one hundred eighty-six (186) wells are registered as domestic wells, two (2) are livestock wells, five (5) are public supply wells, two (2) wells are listed as not being used and one (1) well is listed as having an unknown status.

Most of the records for water supply wells in the area, indicate that they are screened between 25 m and 62 m below grade, with only a few wells screened in the shallow aquifer at depths of 9 to 15 m below grade.

6.3 **Groundwater Monitoring**

The groundwater level in the monitoring wells was measured on three occasions over the period from August 5 to August 26, 2016, to record the fluctuation of the groundwater table beneath the site. The water levels and corresponding elevations are summarized in Table 6-1.

Table 6-1 - Water Level Measurements

<table>
<thead>
<tr>
<th>Well ID</th>
<th>August 5, 2016</th>
<th>August 19, 2016</th>
<th>August 26, 2016</th>
<th>Average Elevation</th>
<th>Fluctuation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH/MW 1</td>
<td>mbgs 1.31</td>
<td>0.95</td>
<td>1.00</td>
<td>1.09</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>masl 267.28</td>
<td>267.64</td>
<td>267.59</td>
<td>267.50</td>
<td></td>
</tr>
<tr>
<td>BH/MW 2</td>
<td>mbgs 3.10</td>
<td>2.32</td>
<td>2.76</td>
<td>2.73</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>masl 267.45</td>
<td>268.23</td>
<td>267.79</td>
<td>267.82</td>
<td></td>
</tr>
<tr>
<td>BH/MW 3</td>
<td>mbgs 2.63</td>
<td>3.03</td>
<td>3.08</td>
<td>2.91</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>masl 261.56</td>
<td>261.16</td>
<td>261.11</td>
<td>261.28</td>
<td></td>
</tr>
<tr>
<td>BH/MW 4</td>
<td>mbgs 2.32</td>
<td>2.85</td>
<td>2.92</td>
<td>2.70</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>masl 259.59</td>
<td>259.06</td>
<td>258.99</td>
<td>259.21</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- mbgs -- metres below ground surface
- masl -- metres above sea level
As shown above, the groundwater levels at BH/MW 1 and BH/MW 2 fluctuated where the groundwater level increased between August 5 and August 19, and decreased between August 19 and August 26, 2016. The groundwater levels at BH/MW 3 and BH/MW 4 exhibited a consistent decline throughout the monitoring period. The average measured groundwater levels were also interpreted to illustrate the horizontal flow patterns for shallow groundwater across the site, as illustrated on Drawing No. 9.

6.4 **Single Well Response Test Analysis**

All monitoring wells underwent single well response tests (SWRTs) to assess the hydraulic conductivity (K) for saturated aquifer soils at the depths of the well screens. The results of the SWRT analysis are presented in Appendix ‘B’, with a summary of the findings provided in Table 6-2.

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Ground El. (masl)</th>
<th>Monitoring Well Depth (mbgs)</th>
<th>Borehole Depth (mbgs)</th>
<th>Screen Interval (mbgs)</th>
<th>Screened Soil Strata</th>
<th>Hydraulic Conductivity (K) (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH/MW 1</td>
<td>268.59</td>
<td>6.1</td>
<td>6.3</td>
<td>3.1-6.1</td>
<td>Sandy Silt, Till</td>
<td>3.0x10^{-7}</td>
</tr>
<tr>
<td>BH/MW 2</td>
<td>270.55</td>
<td>7.4</td>
<td>7.8</td>
<td>4.4-7.4</td>
<td>Sandy Silt, Till</td>
<td>8.9x10^{-8}</td>
</tr>
<tr>
<td>BH/MW 3</td>
<td>264.19</td>
<td>5.9</td>
<td>6.3</td>
<td>2.9-5.9</td>
<td>Silty Sand, Till, Sandy Silt, Till</td>
<td>4.7x10^{-7}</td>
</tr>
<tr>
<td>BH/MW 4</td>
<td>261.91</td>
<td>4.6</td>
<td>6.3</td>
<td>1.6-4.6</td>
<td>Silty Sand, Till, Sandy Silt, Till</td>
<td>5.7x10^{-7}</td>
</tr>
</tbody>
</table>

Notes:
mbgs -- metres below ground surface
masl -- metres above sea level

As shown above, the K values range from 3.0×10^{-7} to 8.9×10^{-8} m/s. The results of the SWRT provide an indication of the yield capacity for the shallow groundwater-bearing strata at the depths of the screens. The above results suggest that the hydraulic
conductivity for the groundwater-bearing soils at the depths of the well screens is low with correspondingly low anticipated groundwater seepage rates.

6.5 **Assessment of Hydraulic Conductivity based on Hazen Equation**

The Hazen Equation method was adopted to estimate the hydraulic conductivity (K) for different soil layers which may contain groundwater during the seasonal high water table spring period, or if encountered within the services excavations. These layers are primarily above the well screen depths.

The Hazen equation relies on the interrelationship between hydraulic conductivity and effective grain size diameter, d_{10}, in the soil media. This empirical relation predicts a power-law relation with K, as follow:

$$K = A d_{10}^2$$

where;

d_{10}: Value of the grain size gradation curve as determined by sieve analysis, whereby 10% by weight of the soil particles are finer and 90% by weight of the soil particles are coarser.

A: Coefficient; it is equal to 1 when K in cm/sec and d_{10} is in mm

The Hazen Equation results provide an indication of the yield capacity for groundwater-bearing strata at the vicinity and the depths where the soils samples were collected for grain size analysis. The calculated result indicates that the K value estimate for analysed soil ranges from 6.76 x 10^-6 m/sec for the sand seam within the silty sand, till unit retrieved from a depth of 3.2 m (El. 258.71 masl) at BH/MW 4 to 1.6 x 10^-7 m/sec for the sandy silt till unit for the sample retrieved from a depth of 2.5 mbgs (El. 268.05 masl) at BH/MW2. The K estimate determined from the Hazen method suggests low to moderate hydraulic conductivity for groundwater bearing soil layers.
beneath the subject site, primarily for shallow soil strata above the prevailing water table which may exhibit perched groundwater conditions.

6.6 **Shallow Groundwater Flow Pattern**

The shallow groundwater flow pattern was interpreted from the average for groundwater levels measured at BH/MWs 1, 2, 3 and 4, suggesting that groundwater flows in a northeasterly and southwesterly direction from a groundwater mound located at the southern section of the site. The interpreted shallow groundwater flow pattern for the site area is illustrated on Drawing No. 9.

It should be noted that, locally, shallow groundwater flow mimics the topographic relief across the subject site.
7.0 GROUNDWATER CONTROL DURING CONSTRUCTION

The estimated hydraulic conductivity (K) suggests that groundwater seepage rates into excavations below the groundwater table will be low to moderate. To provide safe, dry and stable conditions for excavations and construction of the proposed housing basements, the water table will need to be lowered in advance of, or during construction. Preliminary estimates for construction dewatering flow required to locally lower the water table, based on the K test results, are discussed in the following section.

7.1 Groundwater Construction Dewatering Rates

Development plans showing the depths of the proposed underground housing structures and servicing depths were not available for review at the time of report preparation. However, it is understood that the proposed residential development will include a basement structure to a proposed excavation depth of about 2.54 m below grade. The size of the development is approximately 9.71 hectares with lot sizes varying from 4,000.8 m² to 4,144.8 m². Excavation is also anticipated to construct the storm water management pond at Block 1.

The elevation of the proposed residential lots ranges between 263.5 masl and 272.5 masl. Because of the differences in site elevation, the dewatering calculation assessment utilizes an average surface elevation of 264 masl for sections of the site which lie at low elevations, an elevation of 268 masl for site sections at the average site elevation and an elevation of 271 masl was considered for site sections that are at higher elevation. The average surface elevation at low elevations was also used to evaluate the dewatering needs for the storm water management pond. The details for each portion of the site are discussed in the following sections:
Sections of site at an elevation of 264 masl:
For site sections, which lie at low elevation, the grading plan elevation is estimated at 264 masl. The proposed lowest excavation depth is 261.46. To facilitate excavation and construction in dry and stable subsoil conditions, it is proposed that the water table be lowered to an elevation of 260.46 masl, which is about 1 m below the lowest proposed excavation depth. The subsoil comprises silty sand and till to the maximum proposed depth of excavation. Comparison of the proposed lowest excavation depth with the highest measured water level indicates that the proposed excavation elevation is about 0.1 m below the highest shallow groundwater level elevation of 261.56 masl as measured at the BH/MW 3 location and with anticipated water table lowered by one additional meter, it is anticipated that construction dewatering will be required for construction of these sections of the development.

Assuming an approximate rectangular excavation for an average lot size of approximately 4,058 m² with a house size of approximately 1,623 m² having a perimeter of about 161 m, the dewatering flow rate could reach an estimated maximum rate of 3,242 L/day. By applying a safety factor of three, the dewatering flow rate could reach a maximum of 9,727 L/day.

Storm water management pond:
For construction of the storm water pond, the grading plan elevation is based on an elevation of 263 masl with an anticipated depth of 2 m below grade. The lowest excavation depth was estimated at 261 masl. The subsoil is comprised of loose sand at the proposed excavation depth. Comparison of the proposed lowest excavation depth with the highest measured water level indicates that the proposed excavation elevation is about 1.41 m above the highest shallow groundwater level elevation of 259.59 masl as measured at the BH/MW 4 location, therefore it is anticipated that construction dewatering will not be required for the construction of the proposed SWM Pond.
Sections of site at an elevation of 268 masl:
For sections, which lie at average elevation, the grading plan elevation was based on an elevation of 268 masl. The proposed lowest excavation depth is 265.46 masl. To facilitate excavation and construction in dry and stable subsoil conditions, it is proposed that the water table be lowered to an elevation of 264.46 masl, which is about 1 m below the lowest proposed excavation depth. The subsoil comprises sandy silt till to the maximum proposed depth of excavation. Comparison of the proposed lowest excavation depth with lots in close proximity to BH/MW 1 location, indicate that the highest shallow groundwater level elevation of 267.64 masl is 3.2 m above the proposed excavation elevation of 265.46 m and for lots in close proximity to BH/MW 2 location, the highest shallow groundwater level elevation of 268.23 masl which is 3.8 m above the proposed excavation depth. Based on this, it is anticipated that construction dewatering will be required for construction of these sections of the development.

Assuming an approximate rectangular excavation for an average lot size of approximately 4,058 m² with a house size of approximately 1,623 m² having a perimeter of about 161 m, the dewatering flow rates range from 11,148 L/day to a maximum rate of 11,768 L/day. By applying a factor of safety of three, the dewatering flow rates could range from 33,445 L/day to 35,303 L/day.

Sections of site at an elevation of 271 masl:
For sections of the site which are at higher elevation, the grading plan elevation was considered at an elevation of 271 masl. The proposed lowest excavation depth is 268.46 masl. To facilitate excavation and construction in dry and stable subsoil conditions, it is proposed that the water table be lowered to an elevation of 267.46 masl, which is about 1 m below the lowest proposed excavation depth. The subsoil comprises sandy silt, till to the maximum depth of proposed excavation.
level indicates that the proposed excavation elevation is about 0.23 m above the highest shallow groundwater level elevation of 268.23 masl as measured at the BH/MW 2 location and to maintain the water level about 1.0 m below the lowest proposed excavation, it is anticipated that minor construction dewatering will be required for construction of these sections of the development.

Assuming an approximate rectangular excavation for an average lot size of approximately 4,058 m² with a house size of approximately 1,623 m² having a perimeter of about 161 m, the temporary dewatering flow rate could reach an estimated maximum rate of 12,690 L/day. By applying a safety factor of three, the dewatering flow rate could reach a maximum of 38,072 L/day.

The calculated flow rates may only occur at the beginning of the dewatering process, and include any rapid removal of runoff following a high intensity storm. It is anticipated that, following localized lowering of the water table, groundwater seepage removed via dewatering from the open excavation will be a fraction of the above estimate since much of the groundwater in the proposed development area will have been removed from local storage. Further, upon excavation, the perched groundwater within the shallow soil horizons is expected to dissipate relatively quickly. If construction is completed during the dry season (Summer), there may only be minimal construction dewatering required as perched groundwater conditions may not be present during the dry season.

7.2 **Groundwater Control Methodology**

Low to moderate groundwater seepage is anticipated within open excavations below the water table, which can likely be controlled by occasional pumping from sumps. Well points can be employed to lower water table if wet soil is unstable and seepage
cannot be controlled via sump pumping. The final design for the dewatering system will be the responsibility of the construction contractors.

The dewatering estimates should be revised once the available plans and profiles for the site have been finalized and are available for review.

7.3 **Mitigation of Potential Impacts Associated with Dewatering**

The zone of influence for dewatering for the areas of the development which lie at the low average surface elevation of 264 masl, could reach a maximum of 24 m from the dewatering wells, for areas at an average surface elevation of 268 masl it could reach a maximum of 27 m and for areas at higher surface elevation of 271 masl it could reach a maximum of 24 m from the sumps or dewatering wells. There is a seasonal surface water feature that originates from the northwestern part of the site which could be temporarily impacted by dewatering activities. In addition, several residential properties are within the zone of influence and may be affected by potential ground settlement associated with dewatering. A geotechnical engineer should be consulted to review potential ground settlement concerns prior to construction.

7.4 **Permanent Drainage for Underground Structures**

Based on the conceptual plan for the development, a single detached house having a conventional basement will be constructed on each lot. The calculations for permanent drainage are based on an average house size of 1,623 m² having a perimeter of about 161 m. For lots at average elevation, the shallow groundwater is about 2.77 m above the proposed basement floor elevation.

Given the low groundwater seepage rate estimates for long-term foundation drainage, conventionally side sloped excavations can be completed for the proposed house
basements. Conventional perimeter footings drains can be included for the house footings along with a simple basement under-slab drainage network to address any long-term seepage to the excavation and underground basement structures. These systems can be drained to independent sump pits, one for the perimeter drains and one for the under-slab network.

As an alternative to foundation drainage and perimeter drainage networks, the option exists to raise the site grades prior to construction.

In order to estimate the long-term dewatering needs for the foundation drainage and perimeter drainage network at the subject site, Darcy’s Equation was used, as described below:

Lots at an average elevation of 268 masl:

\[Q = K \times i \times v \times a \]

Where:

- \(Q \) = Estimated dewatering flow rate (m³/day)
- \(K \) = \(3.0 \times 10^{-7} \) m/sec (highest hydraulic conductivity (K) assessed for silty sand till and sandy silt till encountered during the study)
- \(A \) = 445.97 m² for the Mira Drain foundation walls and 0.25 m² for the under-slab floor drainage network, which are the approximate areas used to estimate groundwater seepage below the water table (cross-sectional area of flow) (m).
- \(iv \) = 0.019 [unitless], Vertical Hydraulic Gradient for groundwater considered for the under-slab floor basement drainage system
- \(ih \) = 0.50 [unitless], Horizontal Hydraulic Gradient for groundwater considered for the perimeter foundation drainage system
Based on the proposed housing basement structure, the long-term drainage flow rate for the perimeter foundation drainage network for a conventionally side sloped excavation is 5,780 L/day. The long-term average drainage flow for the under-slab basement floor drainage network is 0.13 L/day. The combined long-term drainage flow rate for both the perimeter drainage weeper and the under-slab basement floor drainage is estimated at 5,780.13 L/day. Applying a safety factor of 5, the combined drainage flow rate is estimated at 28,900 L/day.

The sump pit and pump systems should be designed for the maximum expected flow rate. The drainage piping should be properly constructed using weepers surrounded by filter cloth, in turn surrounded by bedding stone or concrete sand to minimize loss of fines. Over time, the foundation drainage flow for the underground basement structure may diminish to a lower or possibly negligible steady state rate, but more likely to a low steady state rate that will remain relatively constant over time. It is recommended that the long-term seepage drainage estimations be revised, if any required based on final development and grading plans, once they become available for review.

7.5 **Ground Settlement**

Potential ground settlement associated with dewatering should be assessed by a geotechnical engineer prior to construction.
8.0 POTENTIAL WATER SUPPLY EVALUATION

Hydrogeological investigation indicates the presence of a shallow silty sand till and a sandy silt till aquifer which underlies the subject site. MOECC water well records indicate that this aquifer is underlain by a low permeability clay layer which is approximately 27 to 47 m thick. This clay layer is in turn underlain by a sand layer which is approximately 2 m to 6 m thick. This lower sand layer is the main aquifer in the area. The well records indicate that there are approximately 186 supply wells drilled within a 500 m radius of the site. Well depths are between 5.5 m and 86 m and fresh water was encountered at depths varying between 1.83 m and 86 m. Well yield varied between 3,600 and 927,000 liters per day.

Interpretation of the lithology of the MOECC water well records indicate that the water in the deep sandy aquifer is confined by the overlying low permeability clay layer. The groundwater below the confining layer is under sub-pressure and when penetrated by wells the water rises above the top of the aquifer. This rise in water level was observed in all of the supply wells drilled within the aquifer in the vicinity of the subject site.

Most domestic water wells are screened between 25 m and 62 m below grade, suggesting that plentiful well yields can be developed for wells in this depth range.

Given that the area is located in a similar hydrogeological setting, it is anticipated that a similar groundwater yield will be achieved if a domestic supply well were to be drilled to similar depths within the confined sand aquifer.
9.0 NUTRIENT LOADING IMPACT

9.1 Reasonable Use Criteria

Nitrate-nitrogen is considered the critical contaminant in this model and is considered a conservative anion which it is not adsorbed by soil in the subsurface, nor does it degrade quickly in a groundwater environment. The maximum permitted nitrate level at the hydraulically downgradient property boundary is 10 mg/L (based on the Ontario Drinking Water Objectives for nitrate).

The background concentration for nitrate adopted from the site’s up-gradient property boundary was 3.0 mg/L. The up-gradient background nitrate concentration in groundwater was incorporated into the mass balance loading assessment as an additional to the modelled concentration for the predicted Nitrate based on proposed number of lots and site area for attenuation in order to maintain a conservative approach for the prediction.

9.2 Nitrate Loading Mass Balance

A mass balance assessment was conducted for nitrate to determine the anticipated concentration that can be predicted at the hydraulically down gradient property boundary based on establishment of 19 lots each serviced by individual on-site septic sewage systems. The assessment assumes natural attenuation for nitrate in shallow groundwater through dilution from the input of precipitation recharge to groundwater and from sewage system loading from the proposed established homes.

A monthly water balance model (the Thornthwaithe water-balance program) provided by the U.S. Geological Survey (USGS, 2007) was used to determine the average infiltration rate at the subject site. Long term precipitation data was collected from the
Canadian Climate Normals between 1981 and 2010 from the Government of Canada website for the Shant Bay weather station (Climate ID No. 6117684). The approximate infiltration rate for the subject site was determined based on the 30-year climate normal for precipitation, as presented in Appendix ‘C’, pages 1 to 3. A mass balance calculation was conducted for nitrate at the subject site which is based on use of both conventional and tertiary treatment for sewage effluent input to septic leaching beds, with the concentration of nitrate loading to groundwater set at 40 mg/L for conventional effluent treatment and at 20 mg/L for tertiary effluent treatment, respectively. The mass balance calculation is provided in Appendix ‘C’, pages 1, 2 and 3 with the expression defined below.

\[C_{pb} = \frac{(C_i \times V_i) + (C_s \times V_s)}{V_i + V_s} \]

Where:
- \(C_i \): concentration of nitrate in precipitation, taken at 0.1 mg/L
- \(V_i \): Annual volume of recharge (i.e. Site Area less impervious surfaces x annual infiltration rate (litres))
- \(C_s \): Nitrate concentration in sewage set at 40 mg/L for conventional septic systems and at 20 mg/l for septic systems having tertiary treatment
- \(V_s \): Volume of sewage x No. of proposed lots, where 1100 litres/day of sewage is taken for estate lots where 19 lots are proposed.
- \(C_{pb} \): Concentration modeled for the property boundary based on the mass balance approach

Based on the mass balance calculation, the nitrate concentration assessed for the down gradient property boundary is 8.07 mg/L based on use of tertiary sewage systems loading, and it is 13.07 mg/L for conventional sewage systems loading. These values include the 3.0 mg/L Nitrate for the upgradient background concentration added to the assessed Nitrate concentration at the downgradient property boundary. The predicted nitrate based on use of 20 mg/L standard tertiary treatment loading for the 19 proposed lots is 5.07 mg/L; by applying the 3.0 mg/L nitrate as a background, it could reach to 8.07 mg/L. As such, the predicted result is below the Ontario Drinking Water Standard of 10 mg/L limits (Appendix ‘C’, page 1). Based on the assessment,
however up to 30 proposed lots could be accommodated based on use of tertiary septic system loading (Appendix ‘C’, page 3) even though only 19 lots have been proposed. For this assessment, additional dilution from assessed groundwater underflow beneath the site has not been considered for the assessment, so the results are considered a conservative evaluation.

Proposed LID measures should be considered for the moderate to high permeability of the existing surface soil, comprised of sand and silty sand till having moderate to high infiltration to the subsurface. Based on the location of the subject site and type of the soils coverage of the entire subject site, the collection of roof top runoff for reinfiltration at the surface to recharge shallow groundwater is recommended; however, applying the same process for runoff collected from driveways and streets is not suggested to avoid infiltration of runoff impacted by deicing salt
10.0 **CONCLUSIONS**

Based on the findings of this Hydrogeological Study, the following summary of conclusions and recommendations are provided:

1. The subject site is located within the physiographic region of Southern Ontario known as the Simcoe Lowlands.
2. The surface soil consists of predominantly sandy silt to silt matrix, commonly rich in clasts and often high in total matrix carbonate content.
3. The subject site exhibits a decline in relief towards the northeast and northwest portion of the site with a total elevation relief of about 11 m.
4. The site is located within the Nottawasaga River Watershed and the Severn Sound subwatershed.
5. A seasonal tributary of the North River originates from the northwest portion of the site. The main branch of the North River is situated approximately 300 m north of the site.
6. This study has disclosed that beneath a layer of topsoil, sand, silty sand, till and sandy silt till underlie the subject site.
7. The groundwater level at the time of the study ranged from El. 258.99 to El. 268.23 masl. The shallow groundwater levels represent locally perched groundwater within the sandy silt, till horizons.
8. The findings of this study confirm that local groundwater levels range from El. 258.99 to 268.23 masl and that shallow groundwater flows in a northeasterly and southwesterly direction away from an interpreted groundwater mound located within the southern portion of the site.
9. The single well response tests yielded estimated hydraulic conductivity (K) values ranging from 3.0×10^{-7} m/sec to 8.9×10^{-8} m/sec for the sandy silt till and the silty sand till at the depths of the well screens. These results suggest
that low groundwater seepage rates can be anticipated into open excavations below the water table. Any seepage that is encountered is expected to dissipate shortly after excavation commences.

10. The Hazen Equation calculated results indicates a K estimate of 6.76×10^{-6} m/sec for the sandy silt till and 1.60×10^{-7} m/sec for the sandy silt till. The K estimate determined from the Hazen equation suggests low to moderate hydraulic conductivity for groundwater bearing layers beneath the subject site.

11. The preliminary dewatering estimation suggests that the construction dewatering flow rate could reach a maximum of 12,691 L/day, and by applying a safety factor of three, the dewatering rate could reach a maximum of 38,072 L/day. Depending on the season of earthworks, dewatering many not be realized due to seasonal low water table during summer and early fall.

12. The anticipated zone of influence for a dewatering array to lower the water table to facilitate underground basement structure construction could reach a maximum of 27 m from the dewatering wells. There are adjacent residential properties and a watercourse that are within the conceptual zone of influence for dewatering.

13. The anticipated long-term foundation drainage from both an under-slab floor drainage network and a perimeter foundation sub drainage network for a conventionally sloped excavation together give flow estimates ranging from 0.13 L/day to 5,780 L/day, by applying a safety factor of five, it could reach a maximum of 28,900 L/day.

14. Proposed monitoring for any construction dewatering program should include periodic effluent water quality monitoring to verify that it meets the City of Orillia Storm or Sanitary Sewer use Discharge by-law requirements.

15. MOECC water well records indicate that there are approximately 186 domestic supply wells drilled within a 500 m radius of the site development.
Well yields for these wells varies between 3,600 and 927,000 liters per day. Most domestic wells are screened in the depth range of between 25 m and 62 m below the prevailing grade.

16. Based on the mass balance calculation for the 19 proposed lots, the nitrate concentration assessed for the downgradient property boundary is 13.07 mg/L based on use of conventional sewage system loading and it is 8.07 mg/L for use of tertiary treatment sewage system loading from individual septic systems at each proposed lot. The maximum number of lots that can be accommodated using tertiary treatment system loading, at 20 mg/L nitrate is 30. For conventional sewage system loading, the predicted result exceeds the Ontario Drinking Water Standard of 10 mg/L. For this assessment, additional dilution from groundwater underflow beneath the site has not been considered, so the results are considered a conservative evaluation.

17. Proposed LID measures to maintain the pre-development water balance for the post-development site should consider opportunities to re-infiltrate storm water into the shallow sand and silty sand till soils encountered on site. Excess runoff can be directed to the proposed storm water management pond located at the northeast corner of the site.

18. It is recommended that seasonal groundwater levels be measured to confirm the spring high groundwater levels for the site.

19. It is recommended that consideration be given to raising site grades to maintain proposed house basements above the anticipated high groundwater table. Proposed on-site septic sewage systems should consider the
construction of raised effluent leaching beds to allow for sewage leaching and associate effluent bacterial breakdown above the high groundwater table.

SOIL ENGINEERS LTD.

Angella Graham, M.Sc.

Narjes Aljani, M.Sc., P.Geo.

NA/GO
11.0 REFERENCES

5. Lake Simcoe Region Conservation Authority, 2015 Approved South Georgian Bay Lake Simcoe Source Protection Plan
BOREHOLE AND MONITORING WELL LOGS

REFERENCE NO. 1606-W168
LIST OF ABBREVIATIONS AND DESCRIPTION OF TERMS

The abbreviations and terms commonly employed on the borehole logs and figures, and in the text of the report, are as follows:

SAMPLE TYPES

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>Auger sample</td>
</tr>
<tr>
<td>CS</td>
<td>Chunk sample</td>
</tr>
<tr>
<td>DO</td>
<td>Drive open (split spoon)</td>
</tr>
<tr>
<td>DS</td>
<td>Denison type sample</td>
</tr>
<tr>
<td>FS</td>
<td>Foil sample</td>
</tr>
<tr>
<td>RC</td>
<td>Rock core (with size and percentage recovery)</td>
</tr>
<tr>
<td>ST</td>
<td>Slotted tube</td>
</tr>
<tr>
<td>TO</td>
<td>Thin-walled, open</td>
</tr>
<tr>
<td>TP</td>
<td>Thin-walled, piston</td>
</tr>
<tr>
<td>WS</td>
<td>Wash sample</td>
</tr>
</tbody>
</table>

SOIL DESCRIPTION

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>‘N’ (blows/ft)</th>
<th>Relative Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohesionless Soils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘N’ (blows/ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 4</td>
<td></td>
<td>very loose</td>
</tr>
<tr>
<td>4 to 10</td>
<td></td>
<td>loose</td>
</tr>
<tr>
<td>10 to 30</td>
<td></td>
<td>compact</td>
</tr>
<tr>
<td>30 to 50</td>
<td></td>
<td>dense</td>
</tr>
<tr>
<td>over 50</td>
<td></td>
<td>very dense</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>‘N’ (blows/ft)</th>
<th>Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohesive Soils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undrained Shear Strength (ksf)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>less than 0.25</td>
<td>0 to 2</td>
<td>very soft</td>
</tr>
<tr>
<td>0.25 to 0.50</td>
<td>2 to 4</td>
<td>soft</td>
</tr>
<tr>
<td>0.50 to 1.0</td>
<td>4 to 8</td>
<td>firm</td>
</tr>
<tr>
<td>1.0 to 2.0</td>
<td>8 to 16</td>
<td>stiff</td>
</tr>
<tr>
<td>2.0 to 4.0</td>
<td>16 to 32</td>
<td>very stiff</td>
</tr>
<tr>
<td>over 4.0</td>
<td>over 32</td>
<td>hard</td>
</tr>
</tbody>
</table>

PENETRATION RESISTANCE

Dynamic Cone Penetration Resistance:

A continuous profile showing the number of blows for each foot of penetration of a 2-inch diameter, 90° point cone driven by a 140-pound hammer falling 30 inches. Plotted as ‘•’

Standard Penetration Resistance or ‘N’ Value:

The number of blows of a 140-pound hammer falling 30 inches required to advance a 2-inch O.D. drive open sampler one foot into undisturbed soil. Plotted as ‘O’

WH Sampler advanced by static weight
PH Sampler advanced by hydraulic pressure
PM Sampler advanced by manual pressure
NP No penetration

METRIC CONVERSION FACTORS

1 ft = 0.3048 metres 1 inch = 25.4 mm
1 lb = 0.454 kg 1 ksf = 47.88 kPa
LOG OF BOREHOLE NO.: BH/MW 1

Job Number: 1606-W168

Project Description: Proposed Residential Development

Job Location: 3879 Town Line, City of Orillia

Method of Boring: Flight-Auger

Drilling Date: July 19, 2016

SOIL DESCRIPTION

<table>
<thead>
<tr>
<th>Elev. (m)</th>
<th>Depth (m)</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>268.6</td>
<td>0.0</td>
<td>25 cm TOPSOIL</td>
</tr>
<tr>
<td>267.9</td>
<td>0.7</td>
<td>Brown, very loose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fine grained</td>
</tr>
<tr>
<td>265.7</td>
<td>2.9</td>
<td>Brown, compact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SILTY SAND, Till</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a trace to some</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>some gravel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>occ. sand and silt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>seams and layers,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cobbles and boulders</td>
</tr>
<tr>
<td></td>
<td></td>
<td>occ. sand pockets</td>
</tr>
<tr>
<td>262.3</td>
<td>6.3</td>
<td>End of Borehole</td>
</tr>
</tbody>
</table>

SAMPLES

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>N-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>DO</td>
<td>4</td>
</tr>
<tr>
<td>1B</td>
<td>DO</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>DO</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>DO</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>DO</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>DO</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>DO</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>DO</td>
<td>100</td>
</tr>
</tbody>
</table>

Atterberg Limits

- Penetration Resistance (blows/30cm)
- Moisture Content (%)
- Water Level

Shear Strength (kN/m²)

- 200
- 150
- 100
- 50

Ground Surface

- 268.6
- 267.9
- 265.7
- 262.3

Bentonite seal from 0 to 2.4 m. Provided with steel monument casing.

SOIL ENGINEERS LTD.
SOIL ENGINEERS LTD.

LOG OF BOREHOLE NO.: BH/MW 2

Job Number: 1606-W168 **Method of Boring:** Flight-Auger

Project Description: Proposed Residential Development **Drilling Date:** July 19, 2016

Job Location: 3879 Town Line, City of Orillia **W.L. @ El. 267.5 m on August 5, 2016**

<table>
<thead>
<tr>
<th>Elev. (m)</th>
<th>Depth (m)</th>
<th>SOIL DESCRIPTION</th>
<th>SAMPLES</th>
<th>PENETRATION RESISTANCE (blows/30cm)</th>
<th>Atterberg Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number</td>
<td>Type</td>
<td>N-Value</td>
</tr>
<tr>
<td>270.6</td>
<td>0.0</td>
<td>20 cm TOPSOIL</td>
<td>1A</td>
<td>DO</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1B</td>
<td>DO</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>DO</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>DO</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>DO</td>
<td>32</td>
</tr>
<tr>
<td>267.7</td>
<td>2.9</td>
<td>sand and rock</td>
<td>5</td>
<td>DO</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fragments</td>
<td>6</td>
<td>DO</td>
<td>100</td>
</tr>
<tr>
<td>262.8</td>
<td>7.8</td>
<td>End of Borehole</td>
<td>7</td>
<td>DO</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>DO</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes:

- Installed 50 mm dia. monitoring well to 7.4 m (3.0 m screen). Sand backfill from 3.8 m to 6.1 m. Bentonite seal from 0 to 3.8 m. Provided with steel monument casing.

Ground Surface

Brown, very loose to dense SILTY SAND, Till a trace to some clay some gravel occ. sand and silt seams and layers, cobbles and boulders occ. sand pockets

Very dense SANDY SILT, Till a trace of clay and gravel occ. cobbles and boulders brown grey

JOB SITE INFORMATION

- **Job Location:** 3879 Town Line, City of Orillia
- **Project Description:** Proposed Residential Development
- **Method of Boring:** Flight-Auger
- **Drilling Date:** July 19, 2016
- **W.L. @ El. 267.5 m on August 5, 2016**

Extraction Details

- **Page:** 1 of 1
- **SOIL ENGINEERS LTD.**
- **Figure No.:** 2
Log of Borehole No.: BH/MW 3

Job Number: 1606-W168

Project Description: Proposed Residential Development

Job Location: 3879 Town Line, City of Orillia

Method of Boring: Flight-Auger

Drilling Date: July 19, 2016

Ground Surface

0.0
20 cm TOPSOIL
Brown, very loose SAND, fine grained

0.7
Brown, compact to very dense SILTY SAND, Till
a trace to some clay
some gravel
occ. sand and silt seams and
layers, cobbles and boulders
occ. sand pockets

261.3
Very dense SANDY SILT, Till
a trace of clay and gravel
occ. cobbles and boulders

257.9
End of Borehole

Installed 50 mm dia. monitoring well to 5.9 m (3.0 m screen). Sand backfill from 2.3 m to 5.9 m. Bentonite seal from 0 to 2.3 m. Provided with steel monument casing.

Atterberg Limits

PL
LL

Dynamic Cone (blows/30cm)

Penetration Resistance (blows/30cm)

Shear Strength (kN/m²)

Water Level

N-Value

Elev. (m)

Depth (m)

SOIL
DESCRIPTION

SAMPLES

Number

Type

1A

DO

3

1B

DO

4

2

DO

11

3

DO

14

4

DO

100

5

DO

100

6

DO

100

7

DO

100

SOIL ENGINEERS LTD.
Job Number: 1606-W168 LOG OF BOREHOLE NO.: BH/MW 4 Figure No.: 4

Project Description: Proposed Residential Development
Job Location: 3879 Town Line, City of Orillia
Method of Boring: Flight-Auger
Drilling Date: July 19, 2016

<table>
<thead>
<tr>
<th>Elev. (m)</th>
<th>Depth (m)</th>
<th>SOIL DESCRIPTION</th>
<th>Samples</th>
<th>Depth Scale (m)</th>
<th>Atterberg Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>261.9</td>
<td>0.0</td>
<td>20 cm TOPSOIL</td>
<td>1A DO</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brown, very loose to loose SAND fine grained above 0.7 m, fine to coarse grained below 0.7 m</td>
<td>1B DO</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>260.6</td>
<td>1.3</td>
<td>weathered brown SILTY SAND, Till a trace to some clay some gravel occ. sand and silt seams and layers, cobbles and boulders occ. sand pockets</td>
<td>2 DO</td>
<td>1.3</td>
<td>10 30 50 70 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brown, loose to very dense brown grey SILTY SAND, Till a trace to some clay and gravel occ. cobbles and boulders</td>
<td>3 DO</td>
<td>1.3</td>
<td>10 30 50 70 90</td>
</tr>
<tr>
<td>258.2</td>
<td>3.7</td>
<td>brown grey Very dense SANDY SILT, Till a trace of clay and gravel occ. cobbles and boulders</td>
<td>4 DO</td>
<td>3.7</td>
<td>10 30 50 70 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 DO</td>
<td>3.7</td>
<td>10 30 50 70 90</td>
</tr>
<tr>
<td>255.6</td>
<td>6.3</td>
<td>End of Borehole</td>
<td>6 DO</td>
<td>6.3</td>
<td>10 30 50 70 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Installed 50 mm dia. monitoring well to 4.6 m (3.0 m screen). Sand backfill from 0.9 m to 4.6 m. Bentonite seal from 0 to 0.9 m. Provided with steel monument casing.</td>
<td>7 DO</td>
<td>6.3</td>
<td>10 30 50 70 90</td>
</tr>
</tbody>
</table>
FIGURES 5 to 6

GRAIN SIZE DISTRIBUTION GRAPHS

REFERENCE NO. 1606-W168
Soil Engineers Ltd.

U.S. BUREAU OF SOILS CLASSIFICATION

GRAIN SIZE DISTRIBUTION

<table>
<thead>
<tr>
<th>GRAVEL</th>
<th>SAND</th>
<th>SILT</th>
<th>CLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>COARSE</td>
<td>FINE</td>
<td>COARSE</td>
<td>MEDIUM</td>
</tr>
</tbody>
</table>

UNIFIED SOIL CLASSIFICATION

<table>
<thead>
<tr>
<th>GRAVEL</th>
<th>SAND</th>
<th>SILT & CLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>COARSE</td>
<td>FINE</td>
<td>COARSE</td>
</tr>
</tbody>
</table>

Figure 5

Project: Proposed Residential Development

Location: 3879 Town Line, City of Orillia

Borehole No: 2

Sample No: 4

Depth (m): 2.5

Elevation (m): 268.05

Estimated Permeability (m/sec.) = 10^{-7}

Classification of Sample [& Group Symbol]: SILTY SAND TILL, some gravel, a trace of clay
Project: Proposed Residential Development
Location: 3879 Town Line

Borehole No: 4
Sample No: 5
Depth (m): 3.2
Elevation (m): 258.71

Estimated Permeability (m./sec.) = 10^{-5}

Classification of Sample [& Group Symbol]: FINE TO MEDIUM SAND, some silt to silty, traces of clay and gravel

Grain Size Distribution

<table>
<thead>
<tr>
<th>GRAVEL</th>
<th>SAND</th>
<th>SILT</th>
<th>CLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>COARSE</td>
<td>FINE</td>
<td>COARSE</td>
<td>MEDIUM</td>
</tr>
</tbody>
</table>

Unified Soil Classification

- **Grain Size Distribution**
 - **SAND**
 - V. FINE
 - **GRAVEL**
 - COARSE
 - **SILT**
 - FINE
 - **CLAY**

Figure: 6

Figure: 6

![Graph](image-url)
DRAWINGS 1 to 9

REFERENCE NO. 1606-W168
Soil Engineers Ltd.

Title: Borehole and Monitoring Well Location Plan

Project: Hydrogeological Study
Proposed Residential Development
3879 Town Line
City of Orillia

Reference No. 1606-W168
Date: December 1, 2017

Scale: 0 35 70 140 210 280 350

Drawing No. 2

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Approximate Boundary of Subject Site
Water Body
Watercourse
Borehole and Monitoring Well Location
Expressway/Freeway
Major Road
Local Road
Title: Quaternary and Surface Geology Map

Project: Hydrogeological Study

Proposed Residential Development

3879 Town Line

City of Orillia

Reference No.: 1606-W168

Date: December 1, 2017

Scale:

- 0 150 300 720 1,080 1,440 1,800 Metres

Source:
- Oak Ridge Moraine, Ontario Ministry of Natural Resources and Forestry
- Queen's Printer for Ontario
- Wetland, Ontario Ministry of Natural Resources and Forestry, 2015
- Queen's Printer for Ontario, 2015
- Water Course, Ontario Ministry of Natural Resources and Forestry, 2015
- Queen's Printer for Ontario, 2015
- Water Body, Ontario Ministry of Natural Resources and Forestry, 2015
- Queen's Printer for Ontario, 2015

Legend:
- **Approximate Boundary of Subject Site**
- **Till**
 - Material: undifferentiated, predominantly sandy silt to silt matrix, commonly rich in clasts, often high in total matrix carbonate content
- **Glaciolacustrine deposits (Sandy)**
 - Material: sand, gravelly sand and gravel, nearshore and beach deposits
- **Glaciofluvial ice-contact deposits**
 - Material: gravel and sand, minor till, includes esker, kame, end moraine, ice-marginal delta and subaqueous fan deposits
- **Organic deposits**
 - Material: peat, muck and marl
- **Approximate Boundary of Subject Site**
- **Expressway/Freeway**
- **Major Road**

Source:
- Oak Ridge Moraine, Ontario Ministry of Natural Resources and Forestry
- Queen's Printer for Ontario
- Wetland, Ontario Ministry of Natural Resources and Forestry, 2015
- Queen's Printer for Ontario, 2015
- Water Course, Ontario Ministry of Natural Resources and Forestry, 2015
- Queen's Printer for Ontario, 2015
- Water Body, Ontario Ministry of Natural Resources and Forestry, 2015
- Queen's Printer for Ontario, 2015
Soil Engineers Ltd.

Title: Natural Features and Protection Area Plan

Project:

Hydrogeological Study
Proposed Residential Development
3879 Town Line
City of Orillia

Reference No. 1606-W168
Date: December 1, 2017

Scale:

0 50 100 200 300 400 500
Metres

Drawing No. 7

Includes information: Provincial Park, Conservation Reserve, Area of Natural and Scientific Interest, Niagara Escarpment Protection Area, Oak Ridges Moraine Conservation and Wilderness Areas

* OWES: Ontario Wetland Evaluation System

Source: Water Body, Ontario Ministry of Natural Resources and Forestry, 2015
Queen's Printer for Ontario

Source: Water Body, Ontario Ministry of Natural Resources and Forestry, 2015
Queen's Printer for Ontario
Title: Cross-Section Key Plan

Project:
Hydrogeological Study
Proposed Residential Development
3879 Town Line
City of Orillia

Reference No. 1606-W168
Date: December 1, 2017

Scale:

Drawing No. 8-1
APPENDIX ‘A’

MOECC WATER WELL RECORDS SUMMARY

REFERENCE NO. 1606-W168
Ontario Water Well Records

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MOECC WWR ID</th>
<th>Construction Method</th>
<th>Well Depth (m)**</th>
<th>Well Usage</th>
<th>Water Found (m)**</th>
<th>Static Water Level (m)**</th>
<th>Top of Screen Depth (m)**</th>
<th>Bottom of Screen Depth (m)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5713939</td>
<td>Rotary (Convent.)</td>
<td>85.65</td>
<td>Livestock</td>
<td>54.86</td>
<td>35.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>5708316</td>
<td>Boring</td>
<td>16.76</td>
<td>Domestic</td>
<td>15.24</td>
<td>10.67</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>5726027</td>
<td>Cable Tool</td>
<td>21.03</td>
<td>Public</td>
<td>21.03</td>
<td>4.88</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>5707435</td>
<td>Cable Tool</td>
<td>56.39</td>
<td>Domestic</td>
<td>55.78</td>
<td>28.96</td>
<td>55.17</td>
<td>56.39</td>
</tr>
<tr>
<td>5</td>
<td>5725060</td>
<td>Cable Tool</td>
<td>17.07</td>
<td>Public</td>
<td>17.07</td>
<td>2.44</td>
<td>14.94</td>
<td>16.15</td>
</tr>
<tr>
<td>6</td>
<td>5706811</td>
<td>Boring</td>
<td>11.28</td>
<td>Domestic</td>
<td>7.62</td>
<td>3.66</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>5738682</td>
<td>Rotary (Air)</td>
<td>27.4</td>
<td>Water Supply</td>
<td>26.00</td>
<td>15.27</td>
<td>26.00</td>
<td>27.4</td>
</tr>
<tr>
<td>8</td>
<td>5738681</td>
<td>Rotary (Air)</td>
<td>70.1</td>
<td>Water Supply</td>
<td>18.00</td>
<td>25.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>5738681</td>
<td>Rotary (Air)</td>
<td>70.1</td>
<td>Water Supply</td>
<td>31.00</td>
<td>25.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>5739088</td>
<td>Rotary (Air)</td>
<td>54.25</td>
<td>Water Supply</td>
<td>54.25</td>
<td>21.34</td>
<td>53.04</td>
<td>54.25</td>
</tr>
<tr>
<td>11</td>
<td>5707168</td>
<td>Boring</td>
<td>9.45</td>
<td>Water Supply</td>
<td>4.57</td>
<td>2.44</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>5707168</td>
<td>Boring</td>
<td>9.45</td>
<td>Water Supply</td>
<td>9.45</td>
<td>2.44</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>5707168</td>
<td>Boring</td>
<td>9.45</td>
<td>Water Supply</td>
<td>9.45</td>
<td>2.44</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>5723948</td>
<td>Cable Tool</td>
<td>17.07</td>
<td>Domestic</td>
<td>13.72</td>
<td>8.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>5723948</td>
<td>Cable Tool</td>
<td>17.07</td>
<td>Water Supply</td>
<td>16.76</td>
<td>8.84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>7177619</td>
<td>Air Percussion</td>
<td>70.1</td>
<td>Water Supply</td>
<td>70.1</td>
<td>25.66</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>5711562</td>
<td>Boring</td>
<td>6.4</td>
<td>Water Supply</td>
<td>1.22</td>
<td>0.61</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>7207090</td>
<td>Rotary (Convent.)</td>
<td>30.48</td>
<td>Water Supply</td>
<td>29.87</td>
<td>13.41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>7207090</td>
<td>Rotary (Convent.)</td>
<td>30.48</td>
<td>Water Supply</td>
<td>29.87</td>
<td>13.41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>7207090</td>
<td>Rotary (Convent.)</td>
<td>30.48</td>
<td>Water Supply</td>
<td>29.87</td>
<td>13.41</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>5709109</td>
<td>Boring</td>
<td>6.1</td>
<td>Water Supply</td>
<td>3.05</td>
<td>3.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>5711561</td>
<td>Boring</td>
<td>5.49</td>
<td>Water Supply</td>
<td>1.83</td>
<td>3.66</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>7154184</td>
<td>Air Percussion</td>
<td>30.48</td>
<td>Water Supply</td>
<td>30.48</td>
<td>12.8</td>
<td>29.26</td>
<td>30.48</td>
</tr>
<tr>
<td>24</td>
<td>5725968</td>
<td>Cable Tool</td>
<td>49.99</td>
<td>Public</td>
<td>49.99</td>
<td>29.57</td>
<td>48.77</td>
<td>49.99</td>
</tr>
<tr>
<td>25</td>
<td>5738542</td>
<td>Rotary (Convent.)</td>
<td>41.4</td>
<td>Water Supply</td>
<td>37.00</td>
<td>29.1</td>
<td>36.7</td>
<td>37.9</td>
</tr>
<tr>
<td>26</td>
<td>5710669</td>
<td>Cable Tool</td>
<td>45.11</td>
<td>Water Supply</td>
<td>44.45</td>
<td>22.86</td>
<td>43.59</td>
<td>44.81</td>
</tr>
<tr>
<td>27</td>
<td>5713270</td>
<td>Cable Tool</td>
<td>27.74</td>
<td>Water Supply</td>
<td>27.43</td>
<td>10.97</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>7197113</td>
<td>Air Percussion</td>
<td>27.74</td>
<td>Water Supply</td>
<td>25.91</td>
<td>1.22</td>
<td>26.21</td>
<td>27.13</td>
</tr>
<tr>
<td>29</td>
<td>7197113</td>
<td>Air Percussion</td>
<td>27.74</td>
<td>Water Supply</td>
<td>25.91</td>
<td>1.22</td>
<td>26.21</td>
<td>27.13</td>
</tr>
<tr>
<td>30</td>
<td>57010460</td>
<td>Boring</td>
<td>6.1</td>
<td>Water Supply</td>
<td>5.49</td>
<td>4.27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>5708801</td>
<td>Boring</td>
<td>13.72</td>
<td>Water Supply</td>
<td>10.67</td>
<td>9.75</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>5713682</td>
<td>Cable Tool</td>
<td>28.04</td>
<td>Water Supply</td>
<td>27.74</td>
<td>11.58</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>5726817</td>
<td>Cable Tool</td>
<td>47.85</td>
<td>Water Supply</td>
<td>47.85</td>
<td>28.96</td>
<td>46.63</td>
<td>47.85</td>
</tr>
<tr>
<td>34</td>
<td>5726021</td>
<td>Cable Tool</td>
<td>48.77</td>
<td>Water Supply</td>
<td>48.77</td>
<td>25.91</td>
<td>47.55</td>
<td>48.77</td>
</tr>
<tr>
<td>35</td>
<td>5709630</td>
<td>Cable Tool</td>
<td>24.38</td>
<td>Water Supply</td>
<td>22.56</td>
<td>10.67</td>
<td>22.56</td>
<td>24.38</td>
</tr>
<tr>
<td>36</td>
<td>5708865</td>
<td>Boring</td>
<td>12.19</td>
<td>Water Supply</td>
<td>9.75</td>
<td>7.62</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37</td>
<td>5701874</td>
<td>Cable Tool</td>
<td>54.86</td>
<td>Water Supply</td>
<td>54.86</td>
<td>21.34</td>
<td>52.43</td>
<td>54.86</td>
</tr>
<tr>
<td>38</td>
<td>5707167</td>
<td>Boring</td>
<td>11.28</td>
<td>Water Supply</td>
<td>8.25</td>
<td>5.79</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>39</td>
<td>5707167</td>
<td>Boring</td>
<td>11.28</td>
<td>Water Supply</td>
<td>10.67</td>
<td>5.79</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>5722144</td>
<td>Boring</td>
<td>13.72</td>
<td>Water Supply</td>
<td>5.79</td>
<td>5.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>41</td>
<td>5722144</td>
<td>Boring</td>
<td>13.72</td>
<td>Water Supply</td>
<td>11.58</td>
<td>5.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>42</td>
<td>5712603</td>
<td>Cable Tool</td>
<td>19.81</td>
<td>Water Supply</td>
<td>16.15</td>
<td>3.05</td>
<td>17.68</td>
<td>19.81</td>
</tr>
<tr>
<td>43</td>
<td>5729835</td>
<td>Rotary (Air)</td>
<td>46.33</td>
<td>Water Supply</td>
<td>44.2</td>
<td>18.29</td>
<td>45.11</td>
<td>46.33</td>
</tr>
<tr>
<td>44</td>
<td>7207091</td>
<td>Air Percussion</td>
<td>26.82</td>
<td>Water Supply</td>
<td>25.3</td>
<td>11.28</td>
<td>24.99</td>
<td>25.91</td>
</tr>
<tr>
<td>45</td>
<td>7207091</td>
<td>Air Percussion</td>
<td>26.82</td>
<td>Water Supply</td>
<td>25.3</td>
<td>11.28</td>
<td>24.99</td>
<td>25.91</td>
</tr>
<tr>
<td>46</td>
<td>7207091</td>
<td>Air Percussion</td>
<td>26.82</td>
<td>Water Supply</td>
<td>25.3</td>
<td>11.28</td>
<td>24.99</td>
<td>25.91</td>
</tr>
<tr>
<td>47</td>
<td>5738541</td>
<td>Rotary (Convent.)</td>
<td>49.09</td>
<td>Water Supply</td>
<td>42.5</td>
<td>24.61</td>
<td>42.43</td>
<td>45.46</td>
</tr>
<tr>
<td>48</td>
<td>5709042</td>
<td>Boring</td>
<td>6.86</td>
<td>Water Supply</td>
<td>6.1</td>
<td>3.35</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>49</td>
<td>5711563</td>
<td>Boring</td>
<td>6.4</td>
<td>Water Supply</td>
<td>2.13</td>
<td>4.27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>7154183</td>
<td>Air Percussion</td>
<td>24.38</td>
<td>Water Supply</td>
<td>24.38</td>
<td>10.97</td>
<td>23.16</td>
<td>24.38</td>
</tr>
</tbody>
</table>
Ontario Water Well Records

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MOECC WWR ID</th>
<th>Construction Method</th>
<th>Well Depth (m)**</th>
<th>Water Found (m)**</th>
<th>Static Water Level (m)**</th>
<th>Top of Screen Depth (m)**</th>
<th>Bottom of Screen Depth (m)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>5738972</td>
<td>Other Method</td>
<td>12.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>52</td>
<td>5738971</td>
<td>Other Method</td>
<td>10.67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>53</td>
<td>5708575</td>
<td>Cable Tool</td>
<td>26.82</td>
<td>25.91</td>
<td>12.19</td>
<td>25.6</td>
<td>26.82</td>
</tr>
<tr>
<td>54</td>
<td>5731185</td>
<td>Cable Tool</td>
<td>56.69</td>
<td>54.25</td>
<td>32</td>
<td>54.25</td>
<td>56.69</td>
</tr>
<tr>
<td>55</td>
<td>5728286</td>
<td>Rotary (Air)</td>
<td>48.46</td>
<td>47.55</td>
<td>13.72</td>
<td>47.55</td>
<td>48.46</td>
</tr>
<tr>
<td>56</td>
<td>5730086</td>
<td>Rotary (Air)</td>
<td>7.62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>57</td>
<td>5722381</td>
<td>Cable Tool</td>
<td>43.28</td>
<td>43.28</td>
<td>22.86</td>
<td>42.06</td>
<td>43.28</td>
</tr>
<tr>
<td>58</td>
<td>5707678</td>
<td>Boring</td>
<td>7.32</td>
<td>4.57</td>
<td>2.74</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>59</td>
<td>5707678</td>
<td>Boring</td>
<td>7.32</td>
<td>7.32</td>
<td>2.74</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>7228774</td>
<td>Air Percussion</td>
<td>34.44</td>
<td>-</td>
<td>15.85</td>
<td>32.92</td>
<td>34.14</td>
</tr>
<tr>
<td>61</td>
<td>7228774</td>
<td>Air Percussion</td>
<td>34.44</td>
<td>-</td>
<td>15.85</td>
<td>32.92</td>
<td>34.14</td>
</tr>
<tr>
<td>62</td>
<td>5708300</td>
<td>Boring</td>
<td>8.23</td>
<td>5.49</td>
<td>4.57</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>63</td>
<td>5714058</td>
<td>Cable Tool</td>
<td>30.78</td>
<td>30.78</td>
<td>21.36</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>64</td>
<td>5716241</td>
<td>Cable Tool</td>
<td>34.14</td>
<td>33.53</td>
<td>19.81</td>
<td>33.22</td>
<td>34.14</td>
</tr>
<tr>
<td>67</td>
<td>5737305</td>
<td>Air Percussion</td>
<td>42.67</td>
<td>42.67</td>
<td>13.72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>68</td>
<td>5711059</td>
<td>Boring</td>
<td>7.62</td>
<td>6.1</td>
<td>4.57</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>69</td>
<td>5709108</td>
<td>Boring</td>
<td>8.53</td>
<td>6.1</td>
<td>6.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>5728753</td>
<td>Cable Tool</td>
<td>52.73</td>
<td>52.73</td>
<td>33.53</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td>5712980</td>
<td>Cable Tool</td>
<td>55.78</td>
<td>45.72</td>
<td>27.43</td>
<td>53.34</td>
<td>54.86</td>
</tr>
<tr>
<td>73</td>
<td>5712980</td>
<td>Cable Tool</td>
<td>55.78</td>
<td>53.95</td>
<td>27.43</td>
<td>53.34</td>
<td>54.86</td>
</tr>
<tr>
<td>74</td>
<td>5739400</td>
<td>Cable Tool</td>
<td>25.91</td>
<td>21.34</td>
<td>8.53</td>
<td>20.73</td>
<td>22.86</td>
</tr>
<tr>
<td>75</td>
<td>5741421</td>
<td>Cable Tool</td>
<td>74.68</td>
<td>73.76</td>
<td>35.05</td>
<td>73.76</td>
<td>74.68</td>
</tr>
<tr>
<td>76</td>
<td>5713147</td>
<td>Cable Tool</td>
<td>63.7</td>
<td>63.7</td>
<td>25.91</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>77</td>
<td>5708950</td>
<td>Boring</td>
<td>8.38</td>
<td>7.62</td>
<td>3.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>78</td>
<td>5713684</td>
<td>Cable Tool</td>
<td>31.7</td>
<td>31.39</td>
<td>30.91</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>79</td>
<td>5714134</td>
<td>Cable Tool</td>
<td>24.34</td>
<td>23.77</td>
<td>14.94</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>80</td>
<td>5740918</td>
<td>Rotary (Air)</td>
<td>61.9</td>
<td>60</td>
<td>22</td>
<td>60</td>
<td>61.5</td>
</tr>
<tr>
<td>81</td>
<td>5723747</td>
<td>Cable Tool</td>
<td>38.4</td>
<td>36.88</td>
<td>18.9</td>
<td>37.19</td>
<td>38.4</td>
</tr>
<tr>
<td>82</td>
<td>5723748</td>
<td>Cable Tool</td>
<td>35.66</td>
<td>35.66</td>
<td>18.9</td>
<td>34.44</td>
<td>35.66</td>
</tr>
<tr>
<td>83</td>
<td>5711056</td>
<td>Boring</td>
<td>12.8</td>
<td>12.19</td>
<td>10.97</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>84</td>
<td>5713731</td>
<td>Cable Tool</td>
<td>78.03</td>
<td>78.03</td>
<td>64.01</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>85</td>
<td>5716343</td>
<td>Cable Tool</td>
<td>28.96</td>
<td>28.96</td>
<td>17.68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>86</td>
<td>7251844</td>
<td>Air Percussion</td>
<td>28.96</td>
<td>28.96</td>
<td>8.29</td>
<td>27.74</td>
<td>28.96</td>
</tr>
<tr>
<td>87</td>
<td>5725917</td>
<td>Cable Tool</td>
<td>28.35</td>
<td>28.35</td>
<td>13.72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>88</td>
<td>7157595</td>
<td>Rotary (Convent.)</td>
<td>30.5</td>
<td>28.6</td>
<td>18.72</td>
<td>28.7</td>
<td>29.9</td>
</tr>
<tr>
<td>89</td>
<td>7157595</td>
<td>Rotary (Convent.)</td>
<td>30.5</td>
<td>28.6</td>
<td>18.72</td>
<td>28.7</td>
<td>29.9</td>
</tr>
<tr>
<td>90</td>
<td>5736341</td>
<td>Rotary (Convent.)</td>
<td>60.96</td>
<td>56.08</td>
<td>32.31</td>
<td>56.39</td>
<td>57.61</td>
</tr>
<tr>
<td>91</td>
<td>7157597</td>
<td>Other Method</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>92</td>
<td>5740025</td>
<td>Rotary (Convent.)</td>
<td>64.01</td>
<td>6.1</td>
<td>29.26</td>
<td>62.79</td>
<td>64.04</td>
</tr>
<tr>
<td>93</td>
<td>5713683</td>
<td>Cable Tool</td>
<td>30.48</td>
<td>30.48</td>
<td>18.59</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>94</td>
<td>5707199</td>
<td>Cable Tool</td>
<td>36.58</td>
<td>36.58</td>
<td>16.76</td>
<td>35.36</td>
<td>36.58</td>
</tr>
<tr>
<td>95</td>
<td>5736177</td>
<td>Cable Tool</td>
<td>43.89</td>
<td>43.89</td>
<td>21.64</td>
<td>42.67</td>
<td>43.89</td>
</tr>
<tr>
<td>96</td>
<td>5713685</td>
<td>Cable Tool</td>
<td>39.93</td>
<td>39.62</td>
<td>15.85</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>97</td>
<td>5720250</td>
<td>Cable Tool</td>
<td>28.65</td>
<td>27.43</td>
<td>115.24</td>
<td>27.74</td>
<td>28.65</td>
</tr>
<tr>
<td>98</td>
<td>5720250</td>
<td>Cable Tool</td>
<td>28.65</td>
<td>28.65</td>
<td>115.24</td>
<td>27.74</td>
<td>28.65</td>
</tr>
<tr>
<td>99</td>
<td>5707198</td>
<td>Cable Tool</td>
<td>38.71</td>
<td>38.71</td>
<td>18.29</td>
<td>37.49</td>
<td>38.71</td>
</tr>
<tr>
<td>100</td>
<td>5717377</td>
<td>Cable Tool</td>
<td>27.74</td>
<td>27.74</td>
<td>17.69</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Ontario Water Well Records

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MOECC WWR ID</th>
<th>Construction Method</th>
<th>Well Depth (m)**</th>
<th>Final Status</th>
<th>Well Usage</th>
<th>Static Water Level (m)**</th>
<th>Top of Screen Depth (m)**</th>
<th>Bottom of Screen Depth (m)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>5736114</td>
<td>Air Percussion</td>
<td>39.62</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>39.62</td>
<td>24.38</td>
<td>38.1</td>
</tr>
<tr>
<td>102</td>
<td>7251843</td>
<td>Air Percussion</td>
<td>30.18</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>30.18</td>
<td>9.08</td>
<td>28.96</td>
</tr>
<tr>
<td>103</td>
<td>5736116</td>
<td>Air Percussion</td>
<td>48.77</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>48.77</td>
<td>6.28</td>
<td>-</td>
</tr>
<tr>
<td>104</td>
<td>5725198</td>
<td>Cable Tool</td>
<td>32</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>32</td>
<td>19.88</td>
<td>30.78</td>
</tr>
<tr>
<td>105</td>
<td>5736113</td>
<td>Air Percussion</td>
<td>47.24</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>47.24</td>
<td>25.91</td>
<td>46.02</td>
</tr>
<tr>
<td>106</td>
<td>5717264</td>
<td>Cable Tool</td>
<td>58.22</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>57.91</td>
<td>31.09</td>
<td>-</td>
</tr>
<tr>
<td>107</td>
<td>5713066</td>
<td>Cable Tool</td>
<td>29.57</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>29.26</td>
<td>19.81</td>
<td>-</td>
</tr>
<tr>
<td>108</td>
<td>5702718</td>
<td>Cable Tool</td>
<td>30.78</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>29.87</td>
<td>20.12</td>
<td>29.87</td>
</tr>
<tr>
<td>109</td>
<td>5702715</td>
<td>Cable Tool</td>
<td>31.09</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>29.87</td>
<td>19.81</td>
<td>30.18</td>
</tr>
<tr>
<td>110</td>
<td>5702716</td>
<td>Boring</td>
<td>12.19</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>12.19</td>
<td>11.28</td>
<td>-</td>
</tr>
<tr>
<td>111</td>
<td>5715630</td>
<td>Cable Tool</td>
<td>30.78</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>30.48</td>
<td>21.34</td>
<td>29.87</td>
</tr>
<tr>
<td>112</td>
<td>57189415</td>
<td>Air Percussion</td>
<td>35.97</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>35.97</td>
<td>14.48</td>
<td>34.75</td>
</tr>
<tr>
<td>113</td>
<td>5702714</td>
<td>Cable Tool</td>
<td>28.04</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>28.04</td>
<td>19.81</td>
<td>-</td>
</tr>
<tr>
<td>114</td>
<td>5717890</td>
<td>Cable Tool</td>
<td>49.68</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>-</td>
<td>18.29</td>
<td>-</td>
</tr>
<tr>
<td>115</td>
<td>5724792</td>
<td>Cable Tool</td>
<td>28.04</td>
<td>Public</td>
<td>Water Supply</td>
<td>28.04</td>
<td>20.42</td>
<td>-</td>
</tr>
<tr>
<td>116</td>
<td>5736115</td>
<td>Air Percussion</td>
<td>35.97</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>35.97</td>
<td>22.86</td>
<td>34.75</td>
</tr>
<tr>
<td>117</td>
<td>5707671</td>
<td>Boring</td>
<td>7.32</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>4.57</td>
<td>2.74</td>
<td>-</td>
</tr>
<tr>
<td>118</td>
<td>5707671</td>
<td>Boring</td>
<td>7.32</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>7.32</td>
<td>2.74</td>
<td>-</td>
</tr>
<tr>
<td>119</td>
<td>5738157</td>
<td>Air Percussion</td>
<td>39.62</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>39.62</td>
<td>16.76</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>5738609</td>
<td>Cable Tool</td>
<td>28.35</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>28.35</td>
<td>13.72</td>
<td>-</td>
</tr>
<tr>
<td>121</td>
<td>5736863</td>
<td>Air Percussion</td>
<td>30.48</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>30.48</td>
<td>9.14</td>
<td>-</td>
</tr>
<tr>
<td>122</td>
<td>5736394</td>
<td>Air Percussion</td>
<td>33.53</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>32</td>
<td>12.19</td>
<td>-</td>
</tr>
<tr>
<td>123</td>
<td>5735650</td>
<td>Air Percussion</td>
<td>38.1</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>38.1</td>
<td>15.24</td>
<td>-</td>
</tr>
<tr>
<td>124</td>
<td>5738487</td>
<td>Air Percussion</td>
<td>36.88</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>35.66</td>
<td>24.38</td>
<td>-</td>
</tr>
<tr>
<td>125</td>
<td>5720862</td>
<td>Cable Tool</td>
<td>24.69</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>24.69</td>
<td>17.07</td>
<td>-</td>
</tr>
<tr>
<td>126</td>
<td>5733779</td>
<td>Rotary (Convent.)</td>
<td>53.95</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>53.95</td>
<td>24.38</td>
<td>52.73</td>
</tr>
<tr>
<td>127</td>
<td>5720807</td>
<td>Cable Tool</td>
<td>28.35</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>28.35</td>
<td>16.46</td>
<td>27.43</td>
</tr>
<tr>
<td>128</td>
<td>5720742</td>
<td>Cable Tool</td>
<td>24.99</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>24.99</td>
<td>16.15</td>
<td>-</td>
</tr>
<tr>
<td>129</td>
<td>5725524</td>
<td>Cable Tool</td>
<td>54.86</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>54.86</td>
<td>39.62</td>
<td>-</td>
</tr>
<tr>
<td>130</td>
<td>5721085</td>
<td>Cable Tool</td>
<td>26.82</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>26.83</td>
<td>15.85</td>
<td>25.6</td>
</tr>
<tr>
<td>131</td>
<td>5722146</td>
<td>Boring</td>
<td>9.75</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>3.05</td>
<td>2.44</td>
<td>-</td>
</tr>
<tr>
<td>132</td>
<td>5723772</td>
<td>Cable Tool</td>
<td>30.78</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>30.78</td>
<td>13.72</td>
<td>29.57</td>
</tr>
<tr>
<td>133</td>
<td>5726023</td>
<td>Cable Tool</td>
<td>31.39</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>31.39</td>
<td>19.81</td>
<td>-</td>
</tr>
<tr>
<td>134</td>
<td>5723335</td>
<td>Cable Tool</td>
<td>27.74</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>27.74</td>
<td>13.72</td>
<td>-</td>
</tr>
<tr>
<td>135</td>
<td>5723336</td>
<td>Cable Tool</td>
<td>25.6</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>25.6</td>
<td>13.41</td>
<td>-</td>
</tr>
<tr>
<td>136</td>
<td>5723773</td>
<td>Cable Tool</td>
<td>30.48</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>30.48</td>
<td>18.90</td>
<td>29.26</td>
</tr>
<tr>
<td>137</td>
<td>5725401</td>
<td>Cable Tool</td>
<td>28.35</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>28.35</td>
<td>16.77</td>
<td>-</td>
</tr>
<tr>
<td>138</td>
<td>5720562</td>
<td>Cable Tool</td>
<td>43.28</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>43.28</td>
<td>22.86</td>
<td>42.06</td>
</tr>
<tr>
<td>139</td>
<td>5734221</td>
<td>Air Percussion</td>
<td>39.93</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>39.93</td>
<td>19.81</td>
<td>-</td>
</tr>
<tr>
<td>140</td>
<td>5732759</td>
<td>Cable Tool</td>
<td>47.24</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>47.24</td>
<td>19.81</td>
<td>-</td>
</tr>
<tr>
<td>141</td>
<td>5732955</td>
<td>Cable Tool</td>
<td>34.44</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>34.44</td>
<td>21.34</td>
<td>33.22</td>
</tr>
<tr>
<td>142</td>
<td>5733019</td>
<td>Cable Tool</td>
<td>45.42</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>45.42</td>
<td>22.86</td>
<td>-</td>
</tr>
<tr>
<td>143</td>
<td>5733515</td>
<td>Rotary (Convent.)</td>
<td>51.82</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>51.82</td>
<td>22.86</td>
<td>50.6</td>
</tr>
<tr>
<td>144</td>
<td>5733436</td>
<td>Air Percussion</td>
<td>37.19</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>37.19</td>
<td>21.34</td>
<td>35.97</td>
</tr>
<tr>
<td>145</td>
<td>5733437</td>
<td>Cable Tool</td>
<td>51.51</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>51.51</td>
<td>27.43</td>
<td>49.68</td>
</tr>
<tr>
<td>146</td>
<td>5733520</td>
<td>Rotary (Convent.)</td>
<td>48.16</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>48.16</td>
<td>24.99</td>
<td>46.33</td>
</tr>
<tr>
<td>147</td>
<td>5733780</td>
<td>Cable Tool</td>
<td>32.92</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>32.92</td>
<td>21.34</td>
<td>32.61</td>
</tr>
<tr>
<td>148</td>
<td>5732571</td>
<td>Cable Tool</td>
<td>37.49</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>37.49</td>
<td>22.86</td>
<td>37.49</td>
</tr>
<tr>
<td>149</td>
<td>5734219</td>
<td>Air Percussion</td>
<td>46.33</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>46.33</td>
<td>16.76</td>
<td>45.11</td>
</tr>
<tr>
<td>150</td>
<td>5734222</td>
<td>Air Percussion</td>
<td>42.06</td>
<td>Domestic</td>
<td>Water Supply</td>
<td>42.06</td>
<td>18.29</td>
<td>40.84</td>
</tr>
</tbody>
</table>
Ontario Water Well Records

<table>
<thead>
<tr>
<th>WELL ID</th>
<th>MOECC WWR ID</th>
<th>Construction Method</th>
<th>Well Depth (m)**</th>
<th>Water Found (m)**</th>
<th>Static Water Level (m)**</th>
<th>Top of Screen Depth (m)**</th>
<th>Bottom of Screen Depth (m)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>151</td>
<td>5734331</td>
<td>Air Percussion</td>
<td>47.85</td>
<td>47.85</td>
<td>15.24</td>
<td>45.72</td>
<td>46.94</td>
</tr>
<tr>
<td>152</td>
<td>5734332</td>
<td>Air Percussion</td>
<td>42.37</td>
<td>42.37</td>
<td>18.29</td>
<td>41.15</td>
<td>42.37</td>
</tr>
<tr>
<td>153</td>
<td>5734539</td>
<td>Air Percussion</td>
<td>37.49</td>
<td>37.49</td>
<td>13.72</td>
<td>36.27</td>
<td>37.49</td>
</tr>
<tr>
<td>154</td>
<td>5734660</td>
<td>Air Percussion</td>
<td>18.9</td>
<td>18.9</td>
<td>3.05</td>
<td>17.68</td>
<td>18.9</td>
</tr>
<tr>
<td>155</td>
<td>5735065</td>
<td>Air Percussion</td>
<td>49.68</td>
<td>49.68</td>
<td>22.86</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>156</td>
<td>5735221</td>
<td>Air Percussion</td>
<td>43.28</td>
<td>43.28</td>
<td>21.34</td>
<td>42.06</td>
<td>43.28</td>
</tr>
<tr>
<td>157</td>
<td>5735222</td>
<td>Air Percussion</td>
<td>44.2</td>
<td>44.2</td>
<td>24.34</td>
<td>42.98</td>
<td>44.2</td>
</tr>
<tr>
<td>158</td>
<td>5733512</td>
<td>Air Percussion</td>
<td>36.27</td>
<td>36.27</td>
<td>21.34</td>
<td>34.75</td>
<td>35.97</td>
</tr>
<tr>
<td>159</td>
<td>5733781</td>
<td>Cable Tool</td>
<td>30.6</td>
<td>50.6</td>
<td>25.3</td>
<td>49.38</td>
<td>50.6</td>
</tr>
<tr>
<td>160</td>
<td>5730902</td>
<td>Cable Tool</td>
<td>53.04</td>
<td>53.04</td>
<td>23.46</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>161</td>
<td>5732553</td>
<td>Cable Tool</td>
<td>42.06</td>
<td>42.06</td>
<td>17.68</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>162</td>
<td>5734220</td>
<td>Air Percussion</td>
<td>45.11</td>
<td>45.11</td>
<td>15.24</td>
<td>43.28</td>
<td>44.5</td>
</tr>
<tr>
<td>163</td>
<td>5728748</td>
<td>Cable Tool</td>
<td>29.26</td>
<td>29.26</td>
<td>17.68</td>
<td>28.35</td>
<td>29.26</td>
</tr>
<tr>
<td>164</td>
<td>5730901</td>
<td>Cable Tool</td>
<td>37.8</td>
<td>36.88</td>
<td>21.97</td>
<td>36.88</td>
<td>37.8</td>
</tr>
<tr>
<td>165</td>
<td>5730903</td>
<td>Cable Tool</td>
<td>29.87</td>
<td>28.04</td>
<td>20.55</td>
<td>28.04</td>
<td>29.87</td>
</tr>
<tr>
<td>166</td>
<td>5733273</td>
<td>Cable Tool</td>
<td>45.72</td>
<td>45.72</td>
<td>25.91</td>
<td>44.55</td>
<td>45.72</td>
</tr>
<tr>
<td>167</td>
<td>5731704</td>
<td>Cable Tool</td>
<td>24.38</td>
<td>24.38</td>
<td>14.63</td>
<td>23.16</td>
<td>24.38</td>
</tr>
<tr>
<td>168</td>
<td>5727398</td>
<td>Cable Tool</td>
<td>28.65</td>
<td>28.65</td>
<td>13.72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>169</td>
<td>5732302</td>
<td>Cable Tool</td>
<td>43.59</td>
<td>43.59</td>
<td>25.91</td>
<td>42.37</td>
<td>43.59</td>
</tr>
<tr>
<td>170</td>
<td>5732303</td>
<td>Cable Tool</td>
<td>35.97</td>
<td>35.97</td>
<td>21.95</td>
<td>34.75</td>
<td>35.97</td>
</tr>
<tr>
<td>171</td>
<td>5727688</td>
<td>Cable Tool</td>
<td>31.39</td>
<td>31.39</td>
<td>29.87</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>172</td>
<td>5740919</td>
<td>Rotary (Air)</td>
<td>36</td>
<td>36</td>
<td>18.2</td>
<td>34.55</td>
<td>36</td>
</tr>
<tr>
<td>173</td>
<td>5733235</td>
<td>Cable Tool</td>
<td>51.82</td>
<td>50.29</td>
<td>22.56</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>174</td>
<td>5741392</td>
<td>Rotary (Air)</td>
<td>39</td>
<td>33</td>
<td>22</td>
<td>37.55</td>
<td>39</td>
</tr>
<tr>
<td>175</td>
<td>5740308</td>
<td>Rotary (Convent.)</td>
<td>42.7</td>
<td>41</td>
<td>28.68</td>
<td>41.55</td>
<td>42.7</td>
</tr>
<tr>
<td>176</td>
<td>5739251</td>
<td>Cable Tool</td>
<td>39.62</td>
<td>38.7</td>
<td>22</td>
<td>38.75</td>
<td>39.62</td>
</tr>
<tr>
<td>177</td>
<td>5737614</td>
<td>Air Percussion</td>
<td>57.91</td>
<td>57.91</td>
<td>15.24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>178</td>
<td>5717426</td>
<td>Cable Tool</td>
<td>53.64</td>
<td>52.64</td>
<td>30.48</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>179</td>
<td>5715086</td>
<td>Rotary (Convent.)</td>
<td>32.61</td>
<td>30.18</td>
<td>18.29</td>
<td>30.18</td>
<td>31.09</td>
</tr>
<tr>
<td>180</td>
<td>7148422</td>
<td>Cable Tool</td>
<td>48.77</td>
<td>48.16</td>
<td>20.73</td>
<td>47.55</td>
<td>48.77</td>
</tr>
<tr>
<td>181</td>
<td>5724762</td>
<td>Cable Tool</td>
<td>36.88</td>
<td>36.88</td>
<td>19.81</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>182</td>
<td>5721601</td>
<td>Cable Tool</td>
<td>27.13</td>
<td>27.13</td>
<td>14.94</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>183</td>
<td>5720468</td>
<td>Cable Tool</td>
<td>26.21</td>
<td>26.21</td>
<td>12.19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>184</td>
<td>5735905</td>
<td>Air Percussion</td>
<td>46.33</td>
<td>46.33</td>
<td>24.34</td>
<td>45.15</td>
<td>46.33</td>
</tr>
<tr>
<td>185</td>
<td>5725197</td>
<td>Rotary (Convent.)</td>
<td>60.96</td>
<td>60.96</td>
<td>27.43</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>186</td>
<td>7053923</td>
<td>Rotary (Convent.)</td>
<td>86</td>
<td>86</td>
<td>31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>187</td>
<td>5737617</td>
<td>Cable Tool</td>
<td>58.52</td>
<td>58.52</td>
<td>52.43</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>188</td>
<td>5722379</td>
<td>Boring</td>
<td>9.75</td>
<td>9.75</td>
<td>2.44</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>189</td>
<td>5722147</td>
<td>Boring</td>
<td>12.19</td>
<td>5.49</td>
<td>2.44</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>190</td>
<td>5722147</td>
<td>Boring</td>
<td>12.19</td>
<td>12.19</td>
<td>2.44</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>191</td>
<td>5721435</td>
<td>Boring</td>
<td>9.14</td>
<td>3.66</td>
<td>0.91</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>192</td>
<td>5729625</td>
<td>Cable Tool</td>
<td>50.9</td>
<td>50.9</td>
<td>23.16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>193</td>
<td>5721436</td>
<td>Boring</td>
<td>9.14</td>
<td>6.71</td>
<td>2.44</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>194</td>
<td>5739183</td>
<td>Cable Tool</td>
<td>52.5</td>
<td>52</td>
<td>21.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>195</td>
<td>5702713</td>
<td>Cable Tool</td>
<td>35.05</td>
<td>27.43</td>
<td>21.34</td>
<td>27.74</td>
<td>28.96</td>
</tr>
<tr>
<td>196</td>
<td>5721524</td>
<td>Cable Tool</td>
<td>47.24</td>
<td>47.24</td>
<td>35.05</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*MOECC WWR ID: Ministry of Environment and Climate Change Water Well Records Identification

**metres below ground surface
APPENDIX ‘B’

RESULTS OF SINGLE WELL RESPONSE TESTS

REFERENCE NO. 1606-W168
Falling Head Test (Slug Test)

- **Test Date:** 19-Aug-16
- **Piezometer/Well No.:** BH/MW 1
- **Ground level:** 268.59 m
- **Screen top level:** 265.49 m
- **Screen bottom level:** 262.49 m
- **Test El. (at midpoint of screen):** 263.99 m
- **Test depth (at midpoint of screen):** 4.6 m
- **Screen length** \(L = \) 3.00 m

- **Diameter of undisturbed portion** \(2R = \) 0.22 m
- **Standpipe diameter** \(2r = \) 0.05 m
- **Initial unbalanced head** \(H_0 = \) -0.511 m
- **Initial water depth** 0.95 m

Aquifer material: sandy silt, till

Shape factor
\[
F = \frac{2 \times 3.14 \times L}{\ln \left(\frac{L}{R} \right)}
\]

\[
F = \frac{3.14 \times r^2}{\ln (H_1/H_2)}
\]

Permeability
\[
K = \frac{F \times (t_2 - t_1)}{\ln (H_1/H_2)}
\]

\[
K = \frac{3.0E-07 \text{ m/s}}{3.0E-05 \text{ cm/s}}
\]

Graph:
- **Y-axis:** Head Ratio, \(H/H_0 \)
- **X-axis:** Time (s)

Calculations:
- \[
\ln \left(\frac{H_1}{H_2} \right) = 0.0008753
\]
- \[
K = 3.0E-07 \text{ m/s}
\]
- \[
K = 3.0E-05 \text{ cm/s}
\]
Falling Head Test (Slug Test)

Test Date: 19-Aug-16

Piezometer/Well No.: BH/MW 2

Ground level: 270.55 m

Screen top level: 266.15 m

Screen bottom level: 263.15 m

Test El. (at midpoint of screen): 264.65 m

Test depth (at midpoint of screen): 5.9 m

Screen length $L = 3.00$ m

Diameter of undisturbed portion $2R = 0.22$ m

Standpipe diameter $2r = 0.05$ m

Initial unbalanced head $H_o = -0.509$ m

Initial water depth 2.32 m

Aquifer material: Sandy Silt, Till

\[2 \times 3.14 \times L \]

Shape factor $F = \frac{2 \times 3.14 \times L}{\ln(L/R)} = 5.701815$ m

Permeability $K = \frac{3.14 \times r^2}{\ln(H_1/H_2) \times (t_2 - t_1)}$ (Bouwer and Rice Method)

\[\frac{\ln(H_1/H_2)}{(t_2 - t_1)} = 0.00025958 \]

\[K = 8.9E-06 \text{ cm/s} \]

\[8.9E-08 \text{ m/s} \]

Time (s)

Head Ratio, H/H_o
Falling Head Test (Slug Test)

Test Date: 19-Aug-16
Piezometer/Well No.: BH/MW 3
Ground level: 264.19 m
Screen top level: 261.29 m
Screen bottom level: 258.29 m
Test El. (at midpoint of screen): 259.79 m
Test depth (at midpoint of screen): 4.4 m
Screen length \(L = 3.00 \) m

Diameter of undisturbed portion \(c2R = 0.22 \) m
Standpipe diameter \(2r = 0.05 \) m
Initial unbalanced head \(Ho = -0.595 \) m
Initial water depth 3.03 m
Aquifer material: Silty Sand Till and Sandy Silt Till

\[
\text{Shape factor } \quad F = \frac{2 \times 3.14 \times L}{\ln(L/R)} = 5.701815 \text{ m}
\]

\[
\text{Permeability } \quad K = \frac{3.14 \times r^2}{F} \times \ln \left(\frac{H_1}{H_2} \right) (\text{Bouwer and Rice Method})
\]

\[
\frac{\ln \left(\frac{H_1}{H_2} \right)}{\left(t_2 - t_1 \right)} = 0.00135155
\]

\[
K = 4.7E-05 \text{ cm/s}
\]

\[
4.7E-07 \text{ m/s}
\]

![Graph of Head Ratio vs. Time](Image)
Falling Head Test (Slug Test)

Test Date: 19-Aug-16
Piezometer/Well No.: BH/MW 4
Ground level: 261.91 m
Screen top level: 260.31 m
Screen bottom level: 257.31 m
Test El. (at midpoint of screen): 258.81 m
Test depth (at midpoint of screen): 3.1 m
Screen length L = 3.00 m

Diameter of undisturbed portion c 2R = 0.22 m
Standpipe diameter 2r = 0.05 m
Initial unbalanced head Ho = -0.546 m
Initial water depth 2.85 m
Aquifer material: Silty Sand Till and Sandy Silt Till

Shape factor

\[F = \frac{2 \times 3.14 \times L}{\ln(L/R)} = 5.701815 \text{ m} \]

Permeability

\[K = \frac{3.14 \times r^2}{F \times (t_2 - t_1)} \times \ln \left(\frac{H_1}{H_2} \right) \text{ (Bouwer and Rice Method)} \]

\[\frac{\ln \left(\frac{H_1}{H_2} \right)}{(t_2 - t_1)} = 0.00165269 \]

\[K = 5.7E-05 \text{ cm/s} \]
\[5.7E-07 \text{ m/s} \]

Head Ratio, H/Ho vs Time (s)
APPENDIX ‘C’

NITRATE IMPACT ASSESSMENT

REFERENCE NO. 1606-W168
Subject Site Information

<table>
<thead>
<tr>
<th>Total Site Area</th>
<th>8.74 ha</th>
<th>87,410.00 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Lots</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Lot Types</td>
<td>Conventional Residential (1 lot reserved for SWM pond)</td>
<td></td>
</tr>
</tbody>
</table>

Calculation of Infiltration Rate

- **Annual Water Surplus after interception**
 - 402.87 mm/yr

- **Weighted infiltration to soil**
 - 261.87 mm/yr

Nitrate going into the system

- **Concentration of nitrate in precipitation**
 - 0.1 mg/L

- **Net Area of subject site**
 - 87,410.00 sq. m

Infiltration of soil

- **Annual Infiltration to site (volume)**
 - 22,889.66 m³/yr

- **Volume of recharge to soil/groundwater table**
 - **22,889,663.36 L/yr**

Nitrate exiting leaching bed system

- **Concentration of nitrate in septic bed effluent**
 - Assumed standard tertiary treatment loading
 - 20 mg/L

- **Area of septic bed for each lot**
 - 257.24 m²

- **Assumed loading rate of sewage system assuming 15 conventional residential lots**
 - 7,628.50 m³/yr
 - 1,100 L/day (average daily loading per residential dwelling)

Background nitrate in groundwater excluded

- **Calculated Concentration at Property Boundary based on standard tertiary sewage systems**
 - 3 mg/L
 - **5.07 mg/L**

Alternate calculation after considering background nitrate in groundwater (@3.00 mg/L)

- **5.07 mg/L**

Source:

Source: G.K. Rutherford, A Preliminary Study of the Composition of Precipitation in Southern Ontario, Department of Geography, Queen's University, Kingston, Ontario, Canada. Received April 14, 1967.
Subject Site Information

Total Site Area 8.74 ha 87,410.00 m²
Proposed Lots 19
Lot Types Conventional Residential
(1 lot reserved for proposed SWM pond)

Calculation of Infiltration Rate

Annual Water Surplus after interception 402.87 mm/yr
Weighted infiltration to soil 261.87 mm/yr

Nitrate going into the system

Concentration of nitrate in precipitation 0.1 mg/L
Net Area of subject site 87,410.00 sq. m

Infiltration of soil 0.2618655 m/yr
Annual Infiltration to site (volume) 22,889.66 m³/yr
volume of recharge to soil/groundwater table 22,889,663.36 L/yr

Nitrate exiting leaching bed system

Concentration of nitrate in septic bed effluent 40 mg/L
Area of septic bed for each lot 257.24 m²
Assumed loading rate for sewage system 7,628.50 m³/yr
assuming 15 conventional residential lots 7,628,500.00 L/yr
Background nitrate in groundwater excluded 3 mg/L
Calculated Concentration at Property Boundary based on conventional sewage systems 10.07 mg/L

results assume no dilution resulting from groundwater underflow

Alternate calculation considering the inclusion of background nitrate in groundwater (@3.00 mg/L)

CONVENTIONAL SYSTEM

MOECC infiltration factor (total of factors) 0.65
Slope Rolling land (0.2)
total of MOE cover Wooded Lot (0.2)
infiltr factors soil Silty sand till/Sand
Source: G.K.Rutherford (0.25) considers diversion of roof runoff to recharge groundwater

Net Area for recharge (full site area) 87,410.00 m²

Based on average leaching bed sizes

1,100 L/day (average daily loading per residential dwelling)

>10 mg/L (Maximum Permitted Concentration of Nitrate at Property Boundary, based on ODWS)

NO UNDERFLOW DILUTION

Source: G.K. Rutherford, A Preliminary Study of the Composition of Precipitation in Southern Ontario, Department of Geography, Queen's University, Kingston, Ontario, Canada. Received April 14, 1967.
Subject Site Information

<table>
<thead>
<tr>
<th>Total Site Area</th>
<th>8.74 ha</th>
<th>87,410.00 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Lots</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Lot Types</td>
<td>Conventional Residential</td>
<td></td>
</tr>
<tr>
<td>(1 lot reserved for SWM pond)</td>
<td>recharge (full site area)</td>
<td>87,410.00 m²</td>
</tr>
</tbody>
</table>

Calculation of Infiltration Rate

- **Annual Water Surplus** after interception: 402.87 mm/yr
- **Weighted infiltration to soil**: 261.87 mm/yr

Nitrate going into the system

- **Concentration of nitrate in precipitation**: 0.1 mg/L
- **Net Area of subject site**: 87,410.00 sq. m

<table>
<thead>
<tr>
<th>Infiltration of soil</th>
<th>0.2618655 m/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Infiltration to site (volume)</td>
<td>22,889.66 m³/yr</td>
</tr>
<tr>
<td>volume of recharge to soil/groundwater table</td>
<td>22,889,663.36 L/yr</td>
</tr>
</tbody>
</table>

Nitrate exiting leaching bed system

- **Concentration of nitrate in septic bed effluent**: 20 mg/L
- **Area of septic bed for each lot**: 257.24 m²

<table>
<thead>
<tr>
<th>Assumed loading rate of sewage system</th>
<th>12,045.00 m³/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>assuming 15 conventional residential lots</td>
<td>12,045,000.00 L/yr</td>
</tr>
<tr>
<td>Background nitrate in groundwater excluded</td>
<td>3 mg/L</td>
</tr>
</tbody>
</table>

Calculated Concentration at Property Boundary based on standard tertiary sewage systems:

| Concentration at Property Boundary | 6.96 mg/L |

Results assume no dilution resulting from groundwater underflow

Alternate calculation after considering background nitrate in groundwater (@3.00 mg/L)

| Concentration at Property Boundary | 9.96 mg/L |

<10 mg/L (Maximum Permitted Concentration of Nitrate at Property Boundary, based on ODWS)

Source: G.K. Rutherford, A Preliminary Study of the Composition of Precipitation in Southern Ontario, Department of Geography, Queen's University, Kingston, Ontario, Canada. Received April 14, 1967.
APPENDIX ‘D’

WATER QUALITY CERTIFICATE OF ANALYSIS

REFERENCE NO. 1606-W168
Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Results relate only to the items tested and to all the items tested.

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request.
Certificate of Analysis

AGAT WORK ORDER: 16T131833
PROJECT: 1606-W168
CLIENT NAME: SOIL ENGINEERS LIMITED
ATTENTION TO: Gavin O'Brien
SAMPLING SITE:
DATE RECEIVED: 2016-08-29
DATE REPORTED: 2016-09-06

Inorganic Chemistry (Water)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Date Sampled</th>
<th>Date Reported</th>
<th>G / S</th>
<th>RDL</th>
<th>G / S</th>
<th>RDL</th>
<th>G / S</th>
<th>RDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>pH Units</td>
<td>8/26/2016</td>
<td>8/26/2016</td>
<td>NA</td>
<td>8.22</td>
<td>NA</td>
<td>8.03</td>
<td>NA</td>
<td>7.97</td>
</tr>
<tr>
<td>Nitrate as N</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>0.05</td>
<td><0.05</td>
<td>0.5</td>
<td>3.0</td>
<td>0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>0.05</td>
<td><0.05</td>
<td>0.5</td>
<td><0.5</td>
<td>0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Ammonia as N</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>0.02</td>
<td><0.02</td>
<td>0.02</td>
<td><0.02</td>
<td>0.02</td>
<td><0.02</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>0.05</td>
<td>1.84</td>
<td>0.05</td>
<td>3.21</td>
<td>0.05</td>
<td>0.92</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>0.10</td>
<td><0.10</td>
<td>0.10</td>
<td>0.21</td>
<td>0.10</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Comments:
RDL - Reported Detection Limit;
G / S - Guideline / Standard
7811720 Elevated RDL indicates the degree of sample dilution prior to the analysis for Anions in order to keep analytes within the calibration range of the instrument and to reduce matrix interference.

Certified By: [Signature]

Results relate only to the items tested and to all the items tested.
Water Analysis

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>Batch</th>
<th>Sample Id</th>
<th>DUP #1</th>
<th>DUP #2</th>
<th>RPD</th>
<th>Method Blank</th>
<th>Measured Value</th>
<th>Lower</th>
<th>Upper</th>
<th>Acceptable Limits</th>
<th>Lower</th>
<th>Upper</th>
<th>Acceptable Limits</th>
<th>Lower</th>
<th>Upper</th>
<th>Recovery</th>
<th>Recovery</th>
<th>Acceptable Limits</th>
<th>Lower</th>
<th>Upper</th>
<th>Recovery</th>
<th>Acceptable Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>780688</td>
<td></td>
<td>7.61</td>
<td>7.69</td>
<td>1.0%</td>
<td>NA</td>
<td>101% 90% 110%</td>
<td>NA</td>
</tr>
<tr>
<td>Nitrate as N</td>
<td>7812051</td>
<td></td>
<td><0.25</td>
<td><0.25</td>
<td>NA</td>
<td>< 0.05</td>
<td>98% 90% 110%</td>
<td>105%</td>
<td>90%</td>
<td>110% 110% 80% 120%</td>
<td>90%</td>
<td>110%</td>
<td>80% 120% 90% 110%</td>
<td>80%</td>
<td>120%</td>
<td>90% 110%</td>
<td>100% 110%</td>
<td>120% 110% 80% 120%</td>
<td>90%</td>
<td>110%</td>
<td>80% 120%</td>
<td>90% 110%</td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>7812051</td>
<td></td>
<td><0.25</td>
<td><0.25</td>
<td>NA</td>
<td>< 0.05</td>
<td>NA 90% 110%</td>
<td>97%</td>
<td>90%</td>
<td>110% 103% 80% 120%</td>
<td>90%</td>
<td>110%</td>
<td>80% 120% 90% 110%</td>
<td>80%</td>
<td>120%</td>
<td>90% 110%</td>
<td>100% 110%</td>
<td>120% 110% 80% 120%</td>
<td>90%</td>
<td>110%</td>
<td>80% 120%</td>
<td>90% 110%</td>
</tr>
<tr>
<td>Ammonia as N</td>
<td>7810703</td>
<td></td>
<td>0.12</td>
<td>0.12</td>
<td>0.0%</td>
<td>< 0.02</td>
<td>95% 90% 110%</td>
<td>104%</td>
<td>90%</td>
<td>110% 111% 80% 120%</td>
<td>90%</td>
<td>110%</td>
<td>80% 120% 90% 110%</td>
<td>80%</td>
<td>120%</td>
<td>90% 110%</td>
<td>100% 110%</td>
<td>120% 110% 80% 120%</td>
<td>90%</td>
<td>110%</td>
<td>80% 120%</td>
<td>90% 110%</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>7812000</td>
<td></td>
<td><0.05</td>
<td><0.05</td>
<td>NA</td>
<td>< 0.05</td>
<td>100% 80% 120%</td>
<td>101%</td>
<td>90%</td>
<td>110% 98% 70% 130%</td>
<td>90%</td>
<td>110%</td>
<td>80% 120% 90% 110%</td>
<td>70%</td>
<td>130%</td>
<td>90% 110%</td>
<td>100% 110%</td>
<td>120% 110% 80% 120%</td>
<td>90%</td>
<td>110%</td>
<td>80% 120%</td>
<td>90% 110%</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>7806904</td>
<td></td>
<td>0.40</td>
<td>0.37</td>
<td>NA</td>
<td>< 0.10</td>
<td>107% 80% 120%</td>
<td>103%</td>
<td>80%</td>
<td>120% 98% 70% 130%</td>
<td>98%</td>
<td>130%</td>
<td>80% 120% 90% 110%</td>
<td>70%</td>
<td>130%</td>
<td>90% 110%</td>
<td>100% 110%</td>
<td>120% 110% 80% 120%</td>
<td>90%</td>
<td>110%</td>
<td>80% 120%</td>
<td>90% 110%</td>
</tr>
</tbody>
</table>

Comments: NA signifies Not Applicable.
Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By: Amanjot Bhela
Method Summary

CLIENT NAME: SOIL ENGINEERS LIMITED
PROJECT: 1606-W168
AGAT WORK ORDER: 16T131833
ATTENTION TO: Gavin O’Brien
SAMPLED BY:

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>AGAT S.O.P</th>
<th>LITERATURE REFERENCE</th>
<th>ANALYTICAL TECHNIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>INOR-93-6000</td>
<td>SM 4500-H+ B</td>
<td>PC TITRATE</td>
</tr>
<tr>
<td>Nitrate as N</td>
<td>INOR-93-6004</td>
<td>SM 4110 B</td>
<td>ION CHROMATOGRAPH</td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>INOR-93-6004</td>
<td>SM 4110 B</td>
<td>ION CHROMATOGRAPH</td>
</tr>
<tr>
<td>Ammonia as N</td>
<td>INOR-93-6059</td>
<td>QuikChem 10-107-06-1-J & SM 4500 NH3-F</td>
<td>LACHAT FIA</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>INOR-93-6057</td>
<td>QuikChem 10-115-01-3-A & SM 4500-P I</td>
<td>LACHAT FIA</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen</td>
<td>INOR-93-6048</td>
<td>QuikChem 10-107-06-2-I & SM 4500-Norg D</td>
<td>LACHAT FIA</td>
</tr>
</tbody>
</table>

Results relate only to the items tested and to all the items tested.
Report Information:

- **Company:** Soil Engineers Ltd.
- **Contact:** Gavin O'Brien
- **Address:** 100 Nuyt Ave, Toronto, ON M1S 3A7
- **Phone:** 416-754-8515, Fax: 416-754-8516
- **Email:** gavin@soilengineersltd.com, vivian@soilengineersltd.com

Regulatory Requirements:

- **No** Regulatory Requirement
 - Table: Indicate One
 - Soil Texture (Check One): Coarse
 - Region: Indicate One

Project Information:

- **Project:** 1606-W168
- **Site Location:** 3879 Tawa Line, Orillia
- **Sampled By:** Vivian

Invoice Information:

- **Bill To Same:** Yes
- **Company:**
- **Address:**
- **Email:**

Sample Matrix Legend

- B: Biota
- GW: Ground Water
- O: Oil
- P: Paint
- S: Soil
- SD: Sediment
- SW: Surface Water

Sample Identification

<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Date Sampled</th>
<th>Time Sampled</th>
<th># of Containers</th>
<th>Sample Matrix</th>
<th>Comments/Special Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH/IMW 3</td>
<td>8/26/2016</td>
<td>9:50</td>
<td>3</td>
<td>GW</td>
<td>TP/NH, field filtered</td>
</tr>
<tr>
<td>BH/IMW 1</td>
<td>8/26/2016</td>
<td>11:00</td>
<td>3</td>
<td>GW</td>
<td>TP/NH, field filtered</td>
</tr>
<tr>
<td>BH/IMW 2</td>
<td>8/26/2016</td>
<td>1:00</td>
<td>3</td>
<td>GW</td>
<td>TP/NH, field filtered</td>
</tr>
</tbody>
</table>

Laboratory Use Only

- **Work Order #:** W131833
- **Cooler Quantity:**
- **Arrival Temperatures:**
- **Custody Seal Intact:**
- **Notes:**

Turnaround Time (TAT) Required

- **Regular TAT:** 5 to 7 Business Days
- **Rush TAT (Rush Surcharges Apply):**
 - 3 Business Days
 - 2 Business Days
 - 1 Business Day
- **OR Date Required (Rush Surcharges May Apply):**

Please provide prior notification for rush TAT

TAT is exclusive of weekends and statutory holidays